Numerical and experimental response of FSSW of AA5052-H32/epoxy/AA5052-H32 sandwich sheets with varying core properties

Author(s):  
Pritam Kumar Rana ◽  
R. Ganesh Narayanan
2013 ◽  
Vol 7 (1) ◽  
pp. 127-135 ◽  
Author(s):  
E. Grande ◽  
M. Imbimbo ◽  
A. Rasulo

The paper discusses the results of an experimental investigation carried out on reinforced concrete (RC) beams strengthened in shear by externally bonded fiber reinforced plastic (FRP) sheets. The study is devoted to analyze the role that the transverse steel reinforcement and the beam slenderness ratio could play on the resistant mechanism of RC beams strengthened in shear by FRP composites. The results are summarized and analyzed in detail in the paper in terms of shear capacity, cracking pattern and shear resisting contribution of FRP.


Author(s):  
Yasser E. Ibrahim ◽  
Asif Hameed ◽  
Asad Ullah Qazi ◽  
Ali Murtaza Rasool ◽  
Muhammad Farhan Latif ◽  
...  

Author(s):  
A. Vania ◽  
P. Pennacchi ◽  
S. Chatterton

Model-based methods can be applied to identify the most likely faults that cause the experimental response of a rotating machine. Sometimes, the objective function, to be minimized in the fault identification method, shows multiple sufficiently low values that are associated with different sets of the equivalent excitations by means of which the fault can be modeled. In these cases, the knowledge of the contribution of each normal mode of interest to the vibration predicted at each measurement point can provide useful information to identify the actual fault. In this paper, the capabilities of an original diagnostic strategy that combines the use of common fault identification methods with innovative techniques based on a modal representation of the dynamic behavior of rotating machines is shown. This investigation approach has been successfully validated by means of the analysis of the abnormal vibrations of a large power unit.


Author(s):  
Saad F. Alazemi ◽  
Amin Bibo ◽  
Mohammed F. Daqaq

This paper presents an experimental study which examines the design parameters affecting the performance characteristics of a Tuned Magnetic Fluid Damper (TMFD) device designed to concurrently mitigate structural vibrations and harvest vibratory energy. The device which is mounted on a vibrating structure, consists of a rectangular container carrying a magnetized ferrofluid and a pick-up coil wound around the container to enable energy harvesting. Experiments are performed to investigate the three-way interaction between the vibrations of the structure, the sloshing of the fluid, and the harvesting circuit dynamics. In particular, the tuning and optimization is examined for several design parameters including magnetic field spatial distribution and intensity, winding direction, winding location, winding density, and ferrofluid height inside the tank. The experimental response of the device is compared against the conventional TMFD at different excitation levels and frequencies. Results demonstrating the influence of the significant parameters on the relative performance are presented and discussed in terms of vibration suppression and power generation capabilities.


2018 ◽  
Vol 12 (4) ◽  
pp. 649-673
Author(s):  
Anthony Michael Fernandes Pimentel ◽  
José Luís de Carvalho Martins Alves ◽  
Nuno Miguel de Seabra Merendeiro ◽  
Tiago Soares

2018 ◽  
Vol 190 ◽  
pp. 593-611 ◽  
Author(s):  
P. Morandi ◽  
L. Albanesi ◽  
F. Graziotti ◽  
T. Li Piani ◽  
A. Penna ◽  
...  

Author(s):  
Kiran Manoharan ◽  
Travis Smith ◽  
Benjamin Emerson ◽  
Christopher M. Douglas ◽  
Tim Lieuwen ◽  
...  

This study is motivated by the necessity to develop a low order prediction approach for unsteady heat release response characteristics in lean premixed gas turbine combustors. This in turn requires an accurate description of the coherent hydrodynamic oscillations induced in the combustor flow by acoustic forcing. Time resolved velocity and flame position fields are obtained using sPIV and OH-PLIF measurements on a single nozzle, swirl-stabilized, premixed, methane-air flame in a model “unwrapped” annular combustor rig. A natural acoustic oscillation in the rig at 115 Hz results in a coherent flow oscillation that is concentrated primarily within the shear layer between the annular jet flow and the central recirculation zone. A linear stability analysis performed about time averaged base flow fields shows that the flow does not have any self-excited hydrodynamic modes. We then compare predictions from a forced response analysis at a forcing frequency of 115 Hz, based on the linearized Navier-Stokes equations for this coherent response. Good qualitative agreement between linear forced response analysis predictions and experimental response results, is seen for the spatial variation of velocity oscillation amplitude fields, away from the burner centerline. Further, good quantitative agreement between predictions and the experimental response is seen for the phase speed of velocity oscillations along the shear layer between the annular jet and the central recirculation zone. This phase velocity is an important flow field characteristic that has a significant impact on the heat release response that results from these coherent velocity oscillations. Present methods for forced response analysis assume uniform forcing amplitude along the radial direction at the forcing location, as well as, open flows along the streamwise direction. Both these assumptions are not strictly true for the present burner which has a center body on its axis. This maybe the reason for somewhat poor qualitative and quantitative agreement between experiments and predictions at the centerline.


Sign in / Sign up

Export Citation Format

Share Document