scholarly journals Genetic diversity and population structure of Indian soybean (Glycine max (L.) Merr.) as revealed by microsatellite markers

2019 ◽  
Vol 25 (4) ◽  
pp. 953-964
Author(s):  
Sharad Tiwari ◽  
Niraj Tripathi ◽  
Koji Tsuji ◽  
Keerti Tantwai
Crop Science ◽  
2011 ◽  
Vol 51 (3) ◽  
pp. 1080-1088 ◽  
Author(s):  
Jeong-Dong Lee ◽  
Tri D. Vuong ◽  
H. Moon ◽  
Ju-Kyung Yu ◽  
R.L. Nelson ◽  
...  

2013 ◽  
Vol 61 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Dekun Dong ◽  
Xujun Fu ◽  
Fengjie Yuan ◽  
Pengyin Chen ◽  
Shenlong Zhu ◽  
...  

Author(s):  
Tonny Obua ◽  
Julius P. Sserumaga ◽  
Stephen O. Opiyo ◽  
Phinehas Tukamuhabwa ◽  
Thomas L. Odong ◽  
...  

Soybean (Glycine max (L.) Merrill) is among the most important crops worldwide due to its numerous uses in feed, food, biofuel, and significant atmospheric nitrogen fixation capability. To understand the genetic diversity and population structure of tropical soybean germplasm, 89 genotypes from diverse sources were analyzed using 7,962 SNP markers. The AMOVA results showed low diversity among and high within the populations, while the polymorphism information content (PIC) was 0.27. Both phylogenetic and principal component analysis grouped the 89 soybean genotypes into three major clusters, while population structure grouped the soybean genotypes into two subpopulations. On the other, the average Roger genetic distances within the study population was 0.34.The low diversity reported in the studied soybean germplasm pool is particularly worrying, considering the new trends of climate change and the emergence of new pests and diseases of soybean. Therefore, in order to address these challenges and develop soybean varieties with desirable traits, there is a need to broaden the genetic base of tropical soybean through the importation of germplasm from other countries.


Author(s):  
Workia Ahmed ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Sumaira Farrakh

Abstract Background Date palm tree (Phoenix dactylifera L.) is a perennial monocotyledonous plant belonging to the Arecaceae family, a special plant with extraordinary nature that gives eminent contributions in agricultural sustainability and huge socio-economic value in many countries of the world including Ethiopia. Evaluation of genetic diversity across date palms at DNA level is very important for breeding and conservation. The result of this study could help to design for genetic improvement and develop germplasm introduction programmes of date palms mainly in Ethiopia. Results In this study, 124 date palm genotypes were collected, and 10 polymorphic microsatellite markers were used. Among 10 microsatellites, MPdCIR085 and MPdCIR093 loci showed the highest value of observed and expected heterozygosity, maximum number of alleles, and highest polymorphic information content values. A total of 112 number of alleles were found, and the mean number of major allele frequency was 0.26, with numbers ranging from 0.155 (MPdCIR085) to 0.374 (MPdCIR016); effective number of alleles with a mean value of 6.61, private alleles ranged from 0.0 to 0.65; observed heterozygosity ranged from 0.355 to 0.726; expected heterozygosity varied from 0.669 to 0.906, polymorphic information content with a mean value of 0.809; fixation index individuals relative to subpopulations ranged from 0.028 for locus MPdCIR032 to 0.548 for locus MPdCIR025, while subpopulations relative to total population value ranged from − 0.007 (MPdCIR070) to 0.891 (MPdCIR015). All nine accesstions, neighbour-joining clustering analysis, based on dissimilarity coefficient values were grouped into five major categories; in population STRUCTURE analysis at highest K value, three groups were formed, whereas DAPC separated date palm genotypes into eight clusters using the first two linear discriminants. Principal coordinate analysis was explained, with a 17.33% total of variation in all populations. Generally, the result of this study revealed the presence of allele variations and high heterozygosity (> 0.7) in date palm genotypes. Conclusions Microsatellites (SSR) are one of the most preferable molecular markers for the study of genetic diversity and population structure of plants. In this study, we found the presence of genetic variations of date palm genotypes in Ethiopia; therefore, these genetic variations of date palms is important for crop improvement and conservation programmes; also, it will be used as sources of information to national and international genbanks.


2020 ◽  
Vol 27 (7) ◽  
pp. 1699-1709
Author(s):  
Rekha Sharma ◽  
Sonika Ahlawat ◽  
Himani Sharma ◽  
Ved Prakash ◽  
Shilpa ◽  
...  

2017 ◽  
Vol 71 ◽  
pp. 87-96 ◽  
Author(s):  
Muhammad Amjad Nawaz ◽  
Seung Hwan Yang ◽  
Hafiz Mamoon Rehman ◽  
Faheem Shehzad Baloch ◽  
Jeong Dong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document