Bifurcation of Periodic Orbits of a Three-Dimensional Piecewise Smooth System

2019 ◽  
Vol 18 (3) ◽  
pp. 1077-1112
Author(s):  
Shenglan Xie ◽  
Maoan Han ◽  
Xuepeng Zhao
2016 ◽  
Vol 26 (01) ◽  
pp. 1650014
Author(s):  
Shuangbao Li ◽  
Wensai Ma ◽  
Wei Zhang ◽  
Yuxin Hao

In this paper, we extend the well-known Melnikov method for smooth systems to a class of planar hybrid piecewise-smooth systems, defined in three domains separated by two switching manifolds [Formula: see text] and [Formula: see text]. The dynamics in each domain is governed by a smooth system. When an orbit reaches the separation lines, then a reset map describing an impacting rule applies instantaneously before the orbit enters into another domain. We assume that the unperturbed system has a continuum of periodic orbits transversally crossing the separation lines. Then, we wish to study the persistence of the periodic orbits under an autonomous perturbation and the reset map. To achieve this objective, we first choose four appropriate switching sections and build a Poincaré map, after that, we present a displacement function and carry on the Taylor expansion of the displacement function to the first-order in the perturbation parameter [Formula: see text] near [Formula: see text]. We denote the first coefficient in the expansion as the first-order Melnikov function whose zeros provide us the persistence of periodic orbits under perturbation. Finally, we study periodic orbits of a concrete planar hybrid piecewise-smooth system by the obtained Melnikov function.


2018 ◽  
Vol 18 (1) ◽  
pp. 315-332
Author(s):  
J.-P. Françoise ◽  
Hongjun Ji ◽  
Dongmei Xiao ◽  
Jiang Yu

2019 ◽  
Vol 29 (12) ◽  
pp. 1950160
Author(s):  
Zhihui Fan ◽  
Zhengdong Du

In this paper, we discuss the bifurcation of periodic orbits in planar piecewise smooth systems with discontinuities on finitely many smooth curves intersecting at the origin. We assume that the unperturbed system has either a limit cycle or a periodic annulus such that the limit cycle or each periodic orbit in the periodic annulus crosses every switching curve transversally multiple times. When the unperturbed system has a limit cycle, we give the conditions for its stability and persistence. When the unperturbed system has a periodic annulus, we obtain the expression of the first order Melnikov function and establish sufficient conditions under which limit cycles can bifurcate from the annulus. As an example, we construct a concrete nonlinear planar piecewise smooth system with three zones with 11 limit cycles bifurcated from the periodic annulus.


2019 ◽  
Vol 29 (10) ◽  
pp. 103108 ◽  
Author(s):  
Vladimir N. Belykh ◽  
Nikita V. Barabash ◽  
Igor V. Belykh

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fang Wu ◽  
Lihong Huang ◽  
Jiafu Wang

<p style='text-indent:20px;'>In this paper, we consider the nonsmooth bifurcation around a class of critical crossing cycles, which are codimension-2 closed orbits composed of tangency singularities and regular orbits, for a two-parameter family of planar piecewise smooth system with two zones. By the construction of suitable displacement function (equivalently, Poincar<inline-formula><tex-math id="M1">\begin{document}$ {\rm\acute{e}} $\end{document}</tex-math></inline-formula> map), the stability and the existence of periodic solutions under the variation of the parameters inside this system are characterized. More precisely, we obtain some parameter regions on the existence of crossing cycles and sliding cycles near those loops. As applications, several examples are given to illustrate our main conclusions.</p>


Sign in / Sign up

Export Citation Format

Share Document