Hydrocarbon reservoir characterization of “AY” field, deep-water Niger Delta using 3D seismic and well logs

2017 ◽  
Vol 10 (6) ◽  
Author(s):  
Oluseun Adetola Sanuade ◽  
Adesoji Olumayowa Akanji ◽  
Michael Adeyinka Oladunjoye ◽  
Abayomi Adesola Olaojo ◽  
Julius O. Fatoba
Heliyon ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. e01742
Author(s):  
Ibukun Olorunniwo ◽  
Sunday J. Olotu ◽  
Olatunbosun A. Alao ◽  
Adekunle A. Adepelumi

Author(s):  
K. A. Obakhume ◽  
O. M. Ekeng ◽  
C. Atuanya

The integrative approach of well log correlation and seismic interpretation was adopted in this study to adequately characterize and evaluate the hydrocarbon potentials of Khume field, offshore Niger Delta, Nigeria. 3-D seismic data and well logs data from ten (10) wells were utilized to delineate the geometry of the reservoirs in Khume field, and as well as to estimate the hydrocarbon reserves. Three hydrocarbon-bearing reservoirs of interest (D-04, D-06, and E-09A) were delineated using an array of gamma-ray logs, resistivity log, and neutron/density log suites. Stratigraphic interpretation of the lithologies in Khume field showed considerable uniform gross thickness across all three sand bodies. Results of petrophysical evaluations conducted on the three reservoirs correlated across the field showed that; shale volume ranged from 7-14%, total and effective porosity ranged from 19-26% and 17-23% respectively, NTG from 42 to 100%, water saturation from 40%-100% and permeability from 1265-2102 mD. Seismic interpretation established the presence of both synthetic and antithetic faults. A total of six synthetic and four antithetic faults were interpreted from the study area. Horizons interpretation was done both in the strike and dip directions. Time and depth structure maps revealed reservoir closures to be anticlinal and fault supported in the field. Hydrocarbon volumes were calculated using the deterministic (map-based) approach. Stock tank oil initially in place (STOIIP) for the proven oil column estimated for the D-04 reservoir was 11.13 MMSTB, 0.54 MMSTB for D-06, and 2.16 MMSTB for E-09A reservoir. For the possible oil reserves, a STOIIP value of 7.28 MMSTB was estimated for D-06 and 6.30 MMSTB for E-09A reservoir, while a hydrocarbon initially in place (HIIP) of 4.13 MMSTB of oil equivalents was derived for the undefined fluid (oil/gas) in D-06 reservoir. A proven gas reserve of 1.07 MMSCF was derived for the D-06 reservoir. This study demonstrated the effectiveness of 3-D seismic and well logs data in delineating reservoir structural architecture and in estimating hydrocarbon volumes


2019 ◽  
Vol 2 (4) ◽  

The reservoir characterization of Buma Field, Niger Delta using seismic and well log data is the focus of this research. Seismic data in SEG-Y format and suites of well logs have been used to achieve the aim and objectives of the research. Methodologies used in this work are standard methods used in this kind of research. Results of the analysis seismic data shows fifteen faults have been identified, nine trend NW-SE and are antithetic faults whereas the six trend NESW and are synthetic faults. These faults formed closures and could act as trapping mechanisms for hydrocarbon in the identified horizons/reservoirs. Two hydrocarbon bearing horizons D and F have been mapped on the seismic and analysis of the well logs showed that sand and shale are major lithologies in the studied wells. Well correlation showed similarities in geological properties such as lithology, reservoir tops and petrophysical properties. Volumetric estimation carried out on the two reservoirs showed Reservoir D having average thickness of 26.73 ft., area of 3784.89 acres, bulk volume of 4407x106 ft3 , net volume of 4226x106 ft3 , pore volume of 216 x106 RB, hydrocarbon pore volume (oil) of 143x106 RB and STOIIP of 77 MMSTB. Reservoir F has an average thickness of 41.55 ft., area of 2790.63 acres, bulk volume of 5051x106 ft3, net volume of 4769x10106 ft3 , pore volume of 248x10106 RB, hydrocarbon pore volume (oil) of 167x10106 RB and STOIIP of 88 MMSTB. Integrating results of structural interpretation, well log analysis, petrophysical properties and volumetric estimation it is evident that both reservoirs have very good porosities and excellent permeability, good thicknesses of productive sand and reduced water saturation as to aid storage and easy flow of hydrocarbon pore fluids. Therefore, the two Buma Field Reservoirs D and F are prolific with hydrocarbon pore fluids (oil) which can be exploited economically


AAPG Bulletin ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 609-627 ◽  
Author(s):  
Shirley P. Dutton ◽  
William A. Flanders ◽  
Mark D. Barton

Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Akinyemi ◽  
Oluwaseun Daniel ◽  
Ayuk ◽  
Michael Ayuk
Keyword(s):  

2011 ◽  
Author(s):  
João José Marques* ◽  
Vitor Novelino ◽  
Rafael Guerra ◽  
Mario Galaguza ◽  
Monica Costa

Sign in / Sign up

Export Citation Format

Share Document