hydrocarbon accumulation
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 151)

H-INDEX

24
(FIVE YEARS 4)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Yunpeng Shan ◽  
Hongjun Wang ◽  
Liangjie Zhang ◽  
Penghui Su ◽  
Muwei Cheng ◽  
...  

In order to provide paleofluid evidence of hydrocarbon accumulation periods in the Amu Darya Right Bank Block, microexperiments and simulations related to the Middle-Upper Jurassic Callovian-Oxfordian carbonate reservoirs were performed. On the basis of petrographic observation, the diagenetic stages were divided by cathodoluminescence, and the entrapment stages of fluid inclusions were divided by laser Raman experiment and UV epifluorescence. The hydrocarbon generation (expulsion) curve and burial (thermal) history curve of source rocks were simulated by using real drilling data coupled with geochemical parameters of source rocks, such as total organic carbon (TOC) and vitrinite reflectance ( R o ). The above results were integrated with microthermometry of fluid inclusions by inference the timing of hydrocarbon migration into the carbonate reservoirs. The horizon-flattening technique was used to process the measured seismic profile and restore the structural evolution profile. Four diagenetic periods and three hydrocarbon accumulation periods were identified. (i) For Syntaxial stage, the fluid captured by the overgrowing cement around particles is mainly seawater; (ii) for (Early) Mesogenetic burial stage, the calcite cements began to capture hydrocarbon fluids and show yellow fluorescence under UV illumination; (iii) for (Late) Mesogenetic burial stage, two sets of cleavage fissures developed in massive calcite cements, and oil inclusions with green fluorescence were entrapped in the crystal; (iv) for Telogenetic burial stage, blue fluorescent inclusions along with hydrocarbon gas inclusions developed in dully luminescent calcite veins. Based on the accurate division of hydrocarbon migration and charging stages, combined with the structural evolution history of the traps, the hydrocarbon accumulation model was established. Because two of the three sets of source rocks are of marine origin, resulting in the lack of vitrinite in the kerogen of those source rocks, there may be some deviation between the measured value of R o and the real value. Some systematic errors may occur in the thermal history and hydrocarbon generation (expulsion) history of the two sets of source rocks. Due to the limitations of seismic horizon-flattening technique—such as the inability to accurately recover the inclined strata thickness and horizontal expansion of strata—the final shape of the evolution process of structural profile may also deviate from the real state in geological history. The accumulation model established in this study was based upon the fluid inclusion experiments, which can effectively characterize the forming process of large condensate gas reservoirs in the Amu Darya Right Bank Block and quantify the timing of hydrocarbon charging. However, the hydrocarbon migration and accumulation model does not take the oil-source correlation into account, but only the relationship between the mature state of source rocks and the timing of hydrocarbon charging into the reservoirs. Subsequent research needs to conduct refined oil-source correlation to reveal the relationship between gas, condensate, source rocks, and recently discovered crude oil and more strictly constrain and modify the accumulation model, so as to finally disclose the origin of the crude oil and oil reservoir forming process in the Amu Darya Right Bank Block, evaluate the future exploration potential, and point out the direction of various hydrocarbon resources (condensate gas and crude oil).


2021 ◽  
pp. 4779-4790
Author(s):  
Marwa H. Shehab ◽  
Kamal K. Ali

     A seismic study was conducted to re-interpret the Qasab and Jawan Oil fields in northwestern Iraq, south of the city of Mosul, by reprocessing many seismic sections of a number of field surveys by using the Petrel software. Two reflectors, represented by the Hartha formation, deposited during the Cretan age, and the Euphrates formation, formed during the Tertiary age, were delineated to stabilize the structural picture of these fields. The stratigraphic study showed that the Qasab and Jawan fields represent areas of hydrocarbon accumulation. Seismic attribute analysis showed low values of instantaneous frequency in the areas of hydrocarbon accumulation. Instantaneous phase was used to determine the limits of the sequence, the nature of sedimentation, and the type of vanishing, i.e. onlap vs. toplap. Low instantaneous amplitude values were recorded, indicating hydrocarbon reservoirs in the studied area. Various other seismic stratigraphic features were studied , including the distribution mound, flat spot, and channels in the two formations, but they were discontinuous because of the tectonic effects. These activities explain reasonably the distribution of hydrocarbons in the studied area.


Author(s):  
Azadeh Hosseini ◽  
Mohammad Hossein Saberi ◽  
Bahman ZareNezhad

AbstractHydrocarbon exploration has long been based on such costly and time-intensive methods as geophysical surveys, geological studies, and drilling. In recent years, however, researchers have started to consider such inexpensive alternatives as surface geochemistry for hydrocarbon exploration. Some 100 years ago, the leakage of hydrocarbons onto the surface in the form of micro- and macro-seepages motivated researchers toward drilling a well in the Khourian Desert in the south of Semnan Province, Iran. Upon drilling the well, researchers found evidences of non-released (free) hydrocarbons. These findings drove further study of the area using surface geochemistry while considering the nearby hydrocarbon accumulation in Qom Formation. Conventional and indirect surface geochemical methods provide an insight into the relationship between surface and subsurface hydrocarbons. In the present work, the results of the Rock–Eval pyrolysis showed total organic carbon (TOC) values in the range of 0.31–4.13 wt.% and S1 peaks between 0.07 and 27.35. Sulfur isotope analysis showed a sulfur isotopic value of −0.4. The study of hydrocarbon-oxidizing bacteria showed the presence of bacterial colonies in MSM at 1.22 × 106 cfu/g of soil sample. We further investigated surface changes due to the presence of free hydrocarbons and pH variations (4.9–8) resulted from the changes in the concentrations of calcium carbonate and iron. According to the results and given the presence of organic sulfur in the samples, the occurrence of Gach-i-turush and alike phenomena was proposed in this area. The results of geo-microbial prospecting method, surface secondary changes, and sulfur isotope studies were well in agreement with the characteristics of the existing hydrocarbon reserves in this area. Surface geochemical surveys can precede other geochemical and geophysical surveys to identify surface anomalies and hence focus on more probable locales of hydrocarbon accumulation in the Khourian Desert, central Iran.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xi Wang ◽  
Yin Liu ◽  
Jian Cao ◽  
Yiduo Liu ◽  
Bing Luo ◽  
...  

Deep-seated faults and folds of foreland basin systems have become important exploration targets in the recent years because they are crucial in controlling fluid migration and hydrocarbon accumulation. In this study, we analyzed the characteristics and formation history of these structures in the northwestern Sichuan Basin using recently acquired two-dimensional (2D) and three-dimensional (3D) seismic data. The seismic interpretation revealed that the thrust sheets, tectonic wedges, and foredeep were well developed in the northwestern Sichuan Basin from the mountain to the basin. Forward thrusts, fault-bend folds, and wedges are the main types of structures in the thrust sheets and tectonic wedges. The deep-seated faults and folds were easily recognized in the high-resolution 3D seismic data. The imbricate thrust faults that merged into detachment layers of the Lower Cambrian are the main types of structures in the foredeep, and they show a prominent strike-slip influence in the horizontal direction. The formation of these structures in the foredeep in the northwestern Sichuan Basin mainly endured two stages of thrusting, including those during the Middle-to-Late Triassic and Cenozoic. Based on the tectonic evolution and seismic data, we infer that these deep-seated faults and folds in the foredeep may have formed earlier than the northern Longmen Shan fold-and-thrust belts and they may have been initially active in the late of Early Triassic and reactive during the Cenozoic. Furthermore, evaporites in the Lower and Middle Triassic were crucial in forming these structures. The petroleum exploration data suggested that the deep-seated faults can facilitate hydrocarbon accumulation. The thrust faults in the foredeep were more likely to act as migration pathways for fluids instead of sealing barriers along the horizontal direction. The interconnected reservoirs of deep-seated folds possess a great potential to allow large-scale hydrocarbon accumulation. Our study provides a good example for evaluating the hydrocarbon exploration potential in the deeply buried area in the sedimentary basin.


2021 ◽  
pp. 285-303
Author(s):  
Prasannajit Acharya ◽  
Pradipta R. Muduli ◽  
Mira Das ◽  
Amrit Kumar Mishra

2021 ◽  
pp. 87-101
Author(s):  
Zhao Wenzhi ◽  
Zhang Yan ◽  
Xu Dafeng ◽  
Zhao Changyi

Sign in / Sign up

Export Citation Format

Share Document