hydrocarbon reservoir
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 155)

H-INDEX

29
(FIVE YEARS 5)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Dahai Wang ◽  
Jinbu Li ◽  
Lili Liu ◽  
Ji Zhang ◽  
Zhanhai Yu ◽  
...  

The value of a cementation exponent, usually obtained by rock and electricity experiments, significantly affects the calculation of water saturation, thickness of the hydrocarbon reservoir, and recovery rate. The determination of the cementation exponent for porous-media reservoirs has been a challenge because of the limited core sampling. A new method was proposed to determine the value of cementation exponent for complex triple-porosity media reservoirs in the work. Firstly, the work discussed the effects of fractures and nonconnected vugs on the cementation exponent of the reservoir as well as the calculation method of the cementation exponent of the dual-porosity media reservoir. Then, a new model for calculating the cementation exponent of triple-porosity media reservoirs was derived by combining the Maxwell-Garnett theory and series-parallel theory, which matched with the real physical-experiment data of rocks. The results showed that the fractures decreased the cementation exponent of the reservoir but the vugs increased. The mixture of matrix pores, fractures, and vugs made the value of the cementation exponent of the triple-porosity media reservoir vary around 2.0. The conductivity of the triple-porosity media reservoir was the external macroscopic expression of the microscopic conductive network. The new calculation model of the cementation exponent proposed in the work could reasonably predict the cementation exponent of the strongly inhomogeneous triple-porosity media reservoir.


Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Gurban Orujov ◽  
Andrei Swidinsky ◽  
Rita Streich

Controlled-source electromagnetic (CSEM) methods have the potential to be used in reservoir monitoring problems, due to their sensitivity to subsurface resistivity distribution. For example, time-lapse electromagnetic (EM) measurements can help to determine reservoir changes during enhanced oil recovery (EOR) processes such as water/steam injection or CO2 sequestration. Although metal infrastructure such as pipelines and casings can strongly influence EM data and mask the underlying geological response, one may presume that these effects cancel out during time-lapse surveys. In this paper, we analyze the effects of well casings on time-lapse surface-to-surface EM measurements. First, using a synthetic example of an onshore 1D hydrocarbon reservoir we quantify the effect of single and multiple casings at several source and receiver locations. We show that time-lapse responses are distorted significantly when a source or receiver is located near a casing. Next, we study a more realistic scenario where we approximate the hydrocarbon reservoir as a thin bounded resistive sheet. We present a Method of Moments (MoM) algorithm to calculate the secondary currents and charges on a well casing and resistive sheet combination and validate the electric fields these secondary sources generate against finite element modeling. Finally, we calculate and explicitly demonstrate time-lapse amplitude changes in the well casing-thin sheet interaction matrix, secondary currents, charges, and surface electric fields. Our 3D modeling results show that the conductive casing reduces the ability of the resistive sheet to impede the current flow and distorts time-lapse responses. Therefore, one cannot fully eliminate casing effects by subtraction of time-lapse data and must fully incorporate such infrastructure into forward models for time-lapse EM inversion.


2021 ◽  
Vol 21 (3) ◽  
pp. 109-116
Author(s):  
Aleksandr V. Raznicyn ◽  
Ivan S. Putilov

Petrophysical typification of productive hydrocarbon deposits is one of the main stages of building a petrophysical model of a reservoir. For carbonate reservoirs characterized by a heterogeneous complex structure of the void space, the problem of identifying petrotypes is very relevant. An extensive literature review of existing methods of petrophysical typification showed that the most well-known and widely used of them were based on simple theoretical models of the structure of the void space of rocks, which did not allow a full description of complex carbonate deposits. Moreover, the petrotypes identified on the basis of these methods did not agree with the results of microdescription of thin sections. A new methodological approach to the identification of petrophysical types of complex carbonate rocks was proposed, based on the integration of the results of standard (determination of the absolute gas permeability and open porosity coefficients) and special (nuclear magnetic resonance studies) core studies and data obtained in the lithological description of thin sections. The developed approach took into account the main petrophysical properties of rocks that characterize its reservoir potential, as well as the structural features of the void space and the influence of secondary transformations. The proposed methodological approach was applied to distinguish petrophysical types in the section of the Assel-Sakmara deposits of the Yareyuskoye field: six petrotypes were identified and described in detail, combined into four zones (zone of development of healed fracturing, zone of development of leaching, zone of development of leaching and open fracturing, zone of development open fracturing), for each of them, individual dependences of the absolute gas permeability coefficient on the open porosity coefficient and the Leverett J-function on the water saturation coefficient were constructed. The information obtained would allow a differentiated approach to geological and hydrodynamic modeling of a hydrocarbon reservoir.


2021 ◽  
Author(s):  
Ghazi D. AL-Qahtani ◽  
Noah Berlow

Abstract Multilateral wells are an evolution of horizontal wells in which several wellbore branches radiate from the main borehole. In the last two decades, multilateral wells have been increasingly utilized in producing hydrocarbon reservoirs. The main advantage of using such technology against conventional and single-bore wells comes from the additional access to reservoir rock by maximizing the reservoir contact with fewer resources. Today, multilateral wells are rapidly becoming more complex in both designs and architecture (i.e., extended reach wells, maximum reservoir contact, and extreme reservoir contact wells). Certain multilateral design templates prevail in the industry, such as fork and fishbone types, which tend to be populated throughout the reservoir of interest with no significant changes to the original architecture and, therefore, may not fully realize the reservoir's potential. Placement of optimal multilateral wells is a multivariable problem, which is a function of determining the best well locations and trajectories in a hydrocarbon reservoir with the ultimate objectives of maximizing productivity and recovery. The placement of the multilateral wells can be subject to many constraints such as the number of wells required, maximum length limits, and overall economics. This paper introduces a novel technology for placement of multilateral wells in hydrocarbon reservoirs utilizing a transshipment network optimization approach. This method generates scenarios of multiple wells with different designs honoring the most favorable completion points in a reservoir. In addition, the algorithm was developed to find the most favorable locations and trajectories for the multilateral wells in both local and global terms. A partitioning algorithm is uniquely utilized to reduce the computational cost of the process. The proposed method will not only create different multilateral designs; it will justify the trajectories of every borehole section generated. The innovative method is capable of constructing hundreds of multilateral wells with design variations in large-scale reservoirs. As the complexity of the reservoirs (e.g., active forces that influence fluid mobility) and heterogeneity dictate variability in performance at different area of the reservoir, multilateral wells should be constructed to capture the most productive zones. The new method also allows different levels of branching for the laterals (i.e., laterals can emanate from the motherbore, from other laterals or from subsequent branches). These features set the stage for a new generation of multilateral wells to achieve the most effective reservoir contact.


2021 ◽  
Author(s):  
Terence George Wood ◽  
Scott Campbell ◽  
Nathan Smith

Abstract The requirement for capturing and storing Carbon Dioxide will continue to grow in the next decade and a fundamental part of this is being able to transport the fluid over large geographical distances in numerous terrains and environments. The evolving nature of the fluid supply and the storage characteristics ensure the operation of the pipeline remains a challenge throughout its operational life. This paper will examine the impact of changes in the fluid composition, storage locations, ambient conditions and the various operating modes the pipeline will see throughout the lifecycle, highlight the technical design and operational challenges and finally give guidance on future developments. The thermodynamic behaviour of CO2 with and without impurities will be demonstrated utilising the fluid characterisation software, MultiflashTM. The fluid behaviour and hydraulic performance will be calculated over the expected operational envelope of the pipeline throughout field life, highlighting the benefits and constraints of using the single component module in OLGATM whilst comparing against a compositional approach when dealing with impurities. The paper will demonstrate through two case studies of varying nature including geographical environment, storage location (aquifer vs. abandoned hydrocarbon reservoir) and ambient conditions, the following issues: The impact of the storage type on the pipeline operations and how this will evolve with time; The environmental conditions and the impact these have on selection of process equipment and operational procedures (i.e. shutdown); and The impact the CO2 composition has on the design of the CO2 pipeline, and The paper will conclude with a set of guidelines for undertaking design analysis of CO2 pipelines for variations in fluid composition, storage locations and ambient conditions as well as some key operational strategies. This paper utilises the current state of the art tools and how these evolving tools are making this technically challenging area more mainstream.


2021 ◽  
Author(s):  
Florence Letitia Bebb ◽  
Kate Clare Serena Evans ◽  
Jagannath Mukherjee ◽  
Bilal Saeed ◽  
Geovani Christopher

Abstract There are several significant differences between the behavior of injected CO2 and reservoired hydrocarbons in the subsurface. These fundamental differences greatly influence the modeling of CO2 plumes. Carbon capture, utilization, and storage (CCUS) is growing in importance in the exploration and production (E&P) regulatory environment with the Oil and Gas Climate Initiative (OGCI) making CCUS a priority. Companies need to prospect for storage sites and evaluate both the short-term risks and long-term fate of stored carbon dioxide (CO2). Understanding the physics governing fluid flow is important to both CO2 storage and hydrocarbon exploration and production. In the last decade, there has been much research into the movement and migration of CO2 in the subsurface. A better understanding of the flow dynamics of CO2 plumes in the subsurface has highlighted a number of significant differences in modeling CO2 storage sites compared with hydrocarbon reservoir simulations. These differences can greatly influence reliability when modeling CO2 storage sites.


2021 ◽  
Author(s):  
Ernesto Gomez Samuel Gomez ◽  
Raider Rivas ◽  
Ebikebena Ombe ◽  
Sajjad Ahmed

Abstract Background Drilling deviated and horizontal high-pressure, high-temperature (HPHT) wells is associated with unique drilling challenges, especially when formation heterogeneity, variation in formation thickness as well as formation structural complexities are encountered while drilling. One of the major challenges encountered is the difficulty of landing horizontal lateral within the thin reservoir layers. Geomechanical modeling has proven to be a vital tool in optimizing casing setting depths and significantly increasing the possible lateral length within hydrocarbon bearing reservoirs. This approach ultimately enhanced the production output of the wells. In a particular field, the horizontal wells are constructed by first drilling 8 3/8" hole section to land about 5 to 10’ into the impervious cap rock just above the target reservoir. The 7" casing is then run and cemented in place, after which the horizontal hole section, usually a 5 7/8" lateral, is drilled by geosteered within the target reservoir to access its best porosity and permeability. Due to the uncertainty of the cap rock thickness, setting the 7" liner at this depth was necessary to avoid drilling too deep into the cap rock and penetrating the target reservoir. This approach has its disadvantages, especially while drilling the 5-7/8" lateral. Numerous drilling challenges were encountered while drilling the horizontal lateral across the hard cap rock. like severe wellbore instability, low ROP and severe drillstring vibration. To mitigate the challenges mentioned above, geomechanical modelling was introduced into the well planning process to optimize the 8 3/8" hole landing depth within the cap rock, thereby reducing the hard caprock interval to be drilled in the next section. Firstly, actual formation properties and in-situ rock stress data were obtained from logs taken in previously drilled wells in the field. This information was then fed into in the geomechanical models to produce near accurate rock properties and stresses values. Data from the formation fracture strength database was also used to calibrate the resulting horizontal stresses and formation breakdown pressure. In addition to this, the formation pore pressure variability was established with the measured formation pressure data. The porosity development information was also used to determine the best landing depths to isolate and case-off the nonreservoir formations. Combined with in-depth well placement studies to determine the optimal well trajectory and wellbore landing strategy, geomechanical modelling enabled the deepening of the 8 3/8" landing depth without penetrating the hydrocarbon reservoir. The geomechanical models were also updated with actual well data in real time and allowed for the optimization of mud weight on the fly. This strategy minimized near wellbore damage across the reservoir section and ultimately improved the wells productivity index. Deepening of the 8 3/8" landing depth and minimizing the footage drilled across the hard and unstable caprock positively impacted the overall well delivery process from well planning and drilling operations up to production. The following achievements were realized in recent wells where geomechanical modelling was applied: The initiative helped in drilling more stable, in-gauge holes across the reservoir sections, which were less prone to wellbore stability problems during drilling and logging operations.Downhole drilling tools were less exposed to harsh drilling conditions and delivered higher performance along with longer drilling runs.Better hole quality facilitated the running of multistage fracture completions which, in turn, contributed to increase the overall gas production, fulfilling the objectives of the reservoir development team.The net-to-gross ratio of the pay zone was increased, thereby improving the efficiency of the multistage fracture stages, and allowing the reservoir to be produced more efficiently.


2021 ◽  
Author(s):  
Mohammad Rasheed Khan ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud

Abstract Photoelectric factor (PEF) is one of functional parameters of a hydrocarbon reservoir that could provide invaluable data for reservoir characterization. Well logs are critical to formation evaluation processes; however, they are not always readily available due to unfeasible logging conditions. In addition, with call for efficiency in hydrocarbon E&P business, it has become imperative to optimize logging programs to acquire maximum data with minimal cost impact. As a result, the present study proposes an improved strategy for generating synthetic log by making a quantitative formulation between conventional well log data, rock mineralogical content and PEF. 230 data points were utilized to implement the machine learning (ML) methodology which is initiated by implementing a statistical analysis scheme. The input logs that are used for architecture establishment include the density and sonic logs. Moreover, rock mineralogical content (carbonate, quartz, clay) has been incorporated for model development which is strongly correlated to the PEF. At the next stage of this study, architecture of artificial neural networks (ANN) was developed and optimized to predict the PEF from conventional well log data. A sub-set of data points was used for ML model construction and another unseen set was employed to assess the model performance. Furthermore, a comprehensive error metrics analysis is used to evaluate performance of the proposed model. The synthetic PEF log generated using the developed ANN correlation is compared with the actual well log data available and demonstrate an average absolute percentage error less than 0.38. In addition, a comprehensive error metric analysis is presented which depicts coefficient of determination more than 0.99 and root mean squared error of only 0.003. The numerical analysis of the error metric point towards the robustness of the ANN model and capability to link mineralogical content with the PEF.


2021 ◽  
Author(s):  
Abdelwahab Noufal

Abstract Fractures were not the focus of reservoir studies in Abu Dhabi for the last decades, although its importance in enhancing production, as the general understanding considering fractures are not contributing to production. The fractured carbonate outcrops provide useful analogue observations, data and concepts to support subsurface hydrocarbon reservoir characterization from well and seismic data. The fracture orientation, size, porosity, length, spacing, crosscutting relationships, fracture density versus lithology and bed thickness and connectivity are difficult to measure directly from subsurface well and core data. The understanding of fracture formation and distribution and their effects on fluid flow has been greatly improved by the use of outcrop analogue data through the current work. This paper address the fracture geometry, kinematics and mechanical properties based on outcrops matching Abu Dhabi subsurface reservoir analogues. Integrating outcrop data with fracture orientation and fracture density from core and borehole image data, and seismic capturing fractures characteristics. The outcrop analogues constrain the uncertainty and developing new concepts in characterizing the interplay of rock matrix and fracture networks relevant to fluid flow and hydrocarbon recovery. Analysing the fractures with fracture lengths, aperture, spacing per each interval and relate them to the tectonic event are extracted strictly in the reservoir section. The results showing developed highly dipping shear fractures with short length, small spacing and bimodal aperture distribution that related to fracture orientation. Fracture porosity is dependent on size and controlled by lithology, bed thickness, paleostress and rock composition. Understanding fractures and their behaviour will optimize production greatly and they create exploration targets in otherwise tight reservoir zones, including under-explored sections.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Jie Zhang ◽  
Xuehua Chen ◽  
Wei Jiang ◽  
Yunfei Liu ◽  
He Xu

Depth-domain seismic wavelet estimation is the essential foundation for depth-imaged data inversion, which is increasingly used for hydrocarbon reservoir characterization in geophysical prospecting. The seismic wavelet in the depth domain stretches with the medium velocity increase and compresses with the medium velocity decrease. The commonly used convolution model cannot be directly used to estimate depth-domain seismic wavelets due to velocity-dependent wavelet variations. We develop a separate parameter estimation method for estimating depth-domain seismic wavelets from poststack depth-domain seismic and well log data. This method is based on the velocity substitution and depth-domain generalized seismic wavelet model defined by the fractional derivative and reference wavenumber. Velocity substitution allows wavelet estimation with the convolution model in the constant-velocity depth domain. The depth-domain generalized seismic wavelet model allows for a simple workflow that estimates the depth-domain wavelet by estimating two wavelet model parameters. Additionally, this simple workflow does not need to perform searches for the optimal regularization parameter and wavelet length, which are time-consuming in least-squares-based methods. The limited numerical search ranges of the two wavelet model parameters can easily be calculated using the constant phase and peak wavenumber of the depth-domain seismic data. Our method is verified using synthetic and real seismic data and further compared with least-squares-based methods. The results indicate that the proposed method is effective and stable even for data with a low S/N.


Sign in / Sign up

Export Citation Format

Share Document