A study of groundwater characteristics in the Songhua River basin of China

2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Qifa Sun ◽  
Zhuoan Sun ◽  
Lingang Jia ◽  
Hui Tian ◽  
Xiaodong Guo ◽  
...  
2012 ◽  
Vol 550-553 ◽  
pp. 2537-2540
Author(s):  
Hai Yan Gu ◽  
Yong Wang ◽  
Lei Yu

The wavelet analysis and fractal theory into the analysis of hydrological time series, fluctuations in hydrological runoff sequence given the complexity of the measurement methods--- fractal dimension. The real monthly runoffs of 28 years from Songhua River basin in Harbin station are selected as research target. Wavelet transform combined with spectrum method is used to calculate the fractal dimension of runoff. Moreover, the result demonstrates that the runoff in Songhua River basin has the characteristic of self-similarity, and the complexity of runoff in the Songhua River basin in Harbin station is described quantificationally.


2020 ◽  
Vol 41 (1) ◽  
pp. 423-438 ◽  
Author(s):  
Keyuan Zhong ◽  
Fenli Zheng ◽  
Xunchang Zhang ◽  
Chao Qin ◽  
Ximeng Xu ◽  
...  

2016 ◽  
Vol 36 (9) ◽  
Author(s):  
沈园 SHEN Yuan ◽  
谭立波 TAN Libo ◽  
单鹏 SHAN Peng ◽  
曹慧明 CAO Huiming ◽  
邓红兵 DENG Hongbing

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2721
Author(s):  
Kuangmin Ye ◽  
Fansheng Meng ◽  
Lingsong Zhang ◽  
Yeyao Wang ◽  
Hao Xue ◽  
...  

Nitrogen pollution is a severe problem in the Songhua River Basin (SHR) in China. Samples were collected from 36 sections of the SHR during the high, low, and flat seasons of the river, and the main sources of nitrogen in the water were qualitatively analyzed with isotope data for nitrogen and oxygen of nitrate. The contribution rates of each major pollution source were quantitatively analyzed using the Iso Source mass balance model. The results from these experiments indicate that the values for δ15N-NO3 and δ18O-NO3 in the flat flow season range from 1.52‰ to 14.55‰ and −14.26‰ to 2.03‰, respectively. The values for δ15N-NO3 and δ18O-NO3 in the low flow season range from 6.66‰ to 15.46‰ and −5.82‰ to 65.70‰, respectively. In the low flow season, nitrogen comes from the input of domestic and manure sewage (53%) and soil organic N (45%). The values of δ15N-NO3 and δ18O-NO3 in the high flow season range from 2.07‰ to 14.24‰ and −3.99‰ to 8.03‰, respectively. In the high flow season, nitrogen comes from soil organic nitrogen (41%), domestic and manure sewage (32%), and nitrogen fertilizer (27%), which are the main sources of nitrogen pollution in the SHR. The conclusions from the qualitative and quantitative analysis of nitrogen sources in the SHR can provide a scientific basis for the source control and treatment of nitrogen pollution.


Sign in / Sign up

Export Citation Format

Share Document