water ecosystem
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 130)

H-INDEX

20
(FIVE YEARS 7)

Author(s):  
Kashif Shaad ◽  
Nicholas J. Souter ◽  
Derek Vollmer ◽  
Helen M. Regan ◽  
Maíra Ometto Bezerra

AbstractNatural ecosystems are fundamental to local water cycles and the water ecosystem services that humans enjoy, such as water provision, outdoor recreation, and flood protection. However, integrating ecosystem services into water resources management requires that they be acknowledged, quantified, and communicated to decision-makers. We present an indicator framework that incorporates the supply of, and demand for, water ecosystem services. This provides an initial diagnostic for water resource managers and a mechanism for evaluating tradeoffs through future scenarios. Building on a risk assessment framework, we present a three-tiered indicator for measuring where demand exceeds the supply of services, addressing the scope (spatial extent), frequency, and amplitude for which objectives (service delivery) are not met. The Ecosystem Service Indicator is measured on a 0–100 scale, which encompasses none to total service delivery. We demonstrate the framework and its applicability to a variety of services and data sources (e.g., monitoring stations, statistical yearbooks, modeled datasets) from case studies in China and Southeast Asia. We evaluate the sensitivity of the indicator scores to varying levels data and three methods of calculation using a simulated test dataset. Our indicator framework is conceptually simple, robust, and flexible enough to offer a starting point for decision-makers and to accommodate the evolution and expansion of tools, models and data sources used to measure and evaluate the value of water ecosystem services.


2022 ◽  
Vol 77 (1) ◽  
pp. 5A-11A
Author(s):  
Ranjith P. Udawatta ◽  
Clark J. Gantzer

2022 ◽  
Vol 962 (1) ◽  
pp. 012037
Author(s):  
G Ts Tsybekmitova

Abstract The research on the state of water ecosystems is significant in terms of future biological impacts of natural and anthropogenic effects. The key branches of natural resources management in Eastern Transbaikalia (agriculture, hydraulic power industry) are based on using water resources. The findings show that technogenesis affects surface waters of the region. Alluvial gold mining represents a significant part of mining industry. Gold mining in river channels results in run-of-stream diversion and interferes with the ecosystem of watercourses. A newly formed structure of a water ecosystem is not favourable for self-purification capacity of rivers. This leads to pollutants accumulation in water objects and deteriorates ecological state of watercourses. Natural components in the technoecosystem of hydropower objects in Eastern Transbaikalia are Lake Kenon and the Kharanor Reservoir. Although the catchment area is polluted by TPP-1, the ecosystem of the lake is still capable of self-purification due to biodiversity of hydrobionts. Under the dry climate in recent years, the Kharanor Reservoir ecosystem turned as rather unstable due to constant refilling from the Onon River. However, generally, pigment indices show physiological activity of primary producers of organic matter.


2022 ◽  
pp. 1944-1964
Author(s):  
Abdelkrim Ben Salem ◽  
Souad Ben Salem ◽  
Mohammed Khebiza Yacoubi ◽  
Mohammed Messouli

Water ecosystem service is the most important element that supports Tafilalet agro-ecosystems. In this region, drought frequency is increasing, which complicate the management groundwater reserves. The ephemeral flows of the rivers force people to use groundwater to meet the population demand. Consequently, water resource management is of significant importance the sustainability of this area. Water evaluation and planning (WEAP) is useful management software used to evaluate and trace the trend of water demand. This model was applied in case of Ziz basin in order to simulate and analyze the situation of water under different scenarios. The results show an increasing of demand for water irrigation and with introducing modern irrigation scenario. However, a decreasing trend in reservoir storage volume and groundwater storage was projected in Tafilalet.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032079
Author(s):  
S Golosov ◽  
I Zverev ◽  
A Terzhevik ◽  
N Palshin ◽  
G Zdorovennova ◽  
...  

Abstract Parametrization of the formation of organic matter in ecological models is traditionally carried out by using the dependence of the Michaelis – Menten – Monod type [Monod, 1942], which describes the growth rate of algal biomass depending on the factor limiting their development. One of the biggest drawbacks of these dependences is the presence of empirical parameters in them, which in a complex way depend on environmental factors and are an individual characteristic of various types of algae. These parameters in the models actually become fitting coefficients that provide the best fit between observational data and modeling results, which does not allow for effective diagnostics and forecasting of the state of aquatic ecosystems. In this work, on the basis of dimensional analysis, a parametrization was obtained that describes the photosynthesis of algae depending on the parameters relatively easily measured in natural conditions - total solar radiation, phytoplankton biomass, and water transparency. Parametrization has been verified according to observations on more than 30 different types of lakes located in different regions of the world. The calculated data are in satisfactory agreement with the data of field observations, both qualitatively and quantitatively. Discrepancies in field and calculated data may be due to the fact that the species composition of algae in lakes of different trophic status is not taken into account, which can lead to errors in assessing the efficiency of using solar radiation. Discrepancies may also be related to the total solar radiation, rather than photosynthetic active radiation, which varies in different geographic and atmospheric conditions. The proposed parametrization can be used in the development of mathematical models of lake ecosystems, as well as to determine the trophic status of poorly studied water bodies.


2021 ◽  
Vol 958 (1) ◽  
pp. 012001
Author(s):  
I Mashkova ◽  
A Kostryukova ◽  
S Belov ◽  
V Trofimenko ◽  
S Mashkov

Abstract The man-made impact on hydro-ecological state of water-bodies affects every stage of water ecosystem formation. Such a load has certain patterns of spatial formation distribution of coastal geosystems with different stages of digression as a result of direct recreational impact on hydrological natural monuments Southern Urals - Lake Turgoyak and Lake Uvildy. The current paper researches a degradation level of the coastal zones of the Lakes Turgoyak and Uvildy (Russia). To prepare for measurements and measure recreational load, the methods of trial areas, transect, mathematical-statistical and registration-measuring methods were used. The level of digression at the test site was determined by an integral generalized assessment of fifteen characteristic criteria for anthropogenic transformation of geosystems on a five-point scale. The trophic status of the studied areas of the lakes was determined by the Carlson Trophic State Index (TSI). Determined that, landscape and recreational zones with various degrees of digression were formed around the lakes under the influence of dispersed recreational load. On the territory of camping sites located no further than 30-50 m from the water-bodies, the 4th-5th stage of recreational digression prevails. At a distance of 50-200 m from the lakes, there is a 2-3 stage of digression. At a distance of up to 100-150 m – the 3rd stage, and from 150 m – the 1-2 stage. Within recreation centers, spatial differences in recreational digression are expressed slightly, and geosystems are more often characterized by a 3-5 stage of digression. It is established that the littoral zooplankton is more diversity in those parts of the lake water area where there are optimal conditions for its development, the lowest recreational load and the lowest degree of digression.


Author(s):  
Mengdi Li ◽  
Yaoping Cui ◽  
Yaochen Qin ◽  
Zhifang Shi ◽  
Nan Li ◽  
...  

The South-to-North Water Diversion (SNWD) provides significant benefits in facilitating water security and improving ecology in northern China. However, few studies have estimated the water value of the SNWD and the corresponding subsequent subsidies of the ecological migrants in Xichuan County displaced by the project. Based on the Google Earth Engine (GEE), this study analyzed the water ecosystem changes in Xichuan County in 2000–2020 and valued the water transfer of the SNWD. We calculated the water cost, the water value of the trunk line project, and the four provinces (Hebei, Henan, Beijing, and Tianjin) of CNY 4.04, 39.64, and 120.93 billion, respectively, and the proportion of the three was 1:10:30 during 2014–2020. The water ecosystem area showed a rapid increase when the SNWD became operational since the end of 2014. The subsequent annual subsidy gap of ecological migrants was CNY 0.84 billion, which only accounted for 4.31% of the gross profit of SNWD. Our results imply that relevant water sectors have sufficient profits to support corresponding subsequent subsidies for ecological migrants. Ecological migrants are a major challenge for water transfer projects. Overall, this study fills a gap of interactions between subsequent policies and ecological migrants and provides a typical case for managing the migration problem caused by sustainable water management worldwide.


2021 ◽  
pp. 42-60
Author(s):  
William Sarni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document