the songhua river
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2721
Author(s):  
Kuangmin Ye ◽  
Fansheng Meng ◽  
Lingsong Zhang ◽  
Yeyao Wang ◽  
Hao Xue ◽  
...  

Nitrogen pollution is a severe problem in the Songhua River Basin (SHR) in China. Samples were collected from 36 sections of the SHR during the high, low, and flat seasons of the river, and the main sources of nitrogen in the water were qualitatively analyzed with isotope data for nitrogen and oxygen of nitrate. The contribution rates of each major pollution source were quantitatively analyzed using the Iso Source mass balance model. The results from these experiments indicate that the values for δ15N-NO3 and δ18O-NO3 in the flat flow season range from 1.52‰ to 14.55‰ and −14.26‰ to 2.03‰, respectively. The values for δ15N-NO3 and δ18O-NO3 in the low flow season range from 6.66‰ to 15.46‰ and −5.82‰ to 65.70‰, respectively. In the low flow season, nitrogen comes from the input of domestic and manure sewage (53%) and soil organic N (45%). The values of δ15N-NO3 and δ18O-NO3 in the high flow season range from 2.07‰ to 14.24‰ and −3.99‰ to 8.03‰, respectively. In the high flow season, nitrogen comes from soil organic nitrogen (41%), domestic and manure sewage (32%), and nitrogen fertilizer (27%), which are the main sources of nitrogen pollution in the SHR. The conclusions from the qualitative and quantitative analysis of nitrogen sources in the SHR can provide a scientific basis for the source control and treatment of nitrogen pollution.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Qifa Sun ◽  
Zhuoan Sun ◽  
Lingang Jia ◽  
Hui Tian ◽  
Xiaodong Guo ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26721-26731
Author(s):  
Congyu Li ◽  
Zhen Zhong ◽  
Wenfu Wang ◽  
Haiyan Wang ◽  
Guokai Yan ◽  
...  

In this study, temporal and spatial distribution of nitrogen in the Songhua River sediments and distribution characteristics of related microbes as well as the relationship between them were investigated.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fanhua Meng ◽  
Zhenxiang Li ◽  
Lei Li ◽  
Feng Lu ◽  
Yan Liu ◽  
...  

AbstractThe relationship between biodiversity and ecological functioning is a central issue in freshwater ecology, but how this relationship is influenced by hydrological connectivity stress is still unknown. In this study we analyzed the dynamic of the phytoplankton alpha diversity indices and their relationships with trophic state in two hydrologically connected aquatic habitats (Jinhewan Wetland and Harbin Section of the Songhua River) in the Songhua River Basin in northeast China. We hypothesized that the phytoplankton alpha-diversity indices have the potential to provide a signal linking trophic state variation in hydrologically connected aquatic habitats. Our results showed the Cyanophyta and Bacillariophyta were abundant at most stations. T-test showed that phytoplankton alpha diversity indices varied significantly between rainy season and dry season. Trophic State Index recorded that a meso-trophic to eutrophic states of two connected habits during study period. Multivariate statistical analysis revealed that the dynamic of phytoplankton alpha diversity index was closely associated with trophic states change. Our result indicated that hydrological connectivity is a key factor influenced phytoplankton community assembly. In addition, it is beneficial to develop an integrated approach to appropriately describe and measure the trophic state variations of hydrologically connected aquatic habits in freshwater ecosystem.


2020 ◽  
Vol 51 (5) ◽  
pp. 1009-1022
Author(s):  
Jie Li ◽  
Wei Dai ◽  
Yang Sun ◽  
Yihui Li ◽  
Guoqiang Wang ◽  
...  

Abstract Runoff patterns are crucial to determine the hydrological response to climate change, especially in a seasonal frost area. In this study, multi-time runoff responses to meteoric precipitation for the period from July 2014 to June 2016 and the period from 1955 to 2010 were obtained to identify different runoff patterns in the Songhua River basin, northeast China, based on six stations. Two distinctly different runoff responses are exhibited: a periodic one in response to precipitation in the Nen River and a constant one in the Second Songhua River under different scales. Stable isotopes in the plain with diverse characteristics also supported these runoff patterns. What is more, gradual runoff relatively less sensitive to precipitation in the Second Songhua Rive was attributed to upstream dam constructions. Furthermore, the Second Songhua River contributes more water to the main stream during January to March at the seasonal scale and in the 2000s at the annual scale, with low precipitation during those periods. This study could have implications for water management in the Songhua River basin.


Sign in / Sign up

Export Citation Format

Share Document