Ages, trace elements and Hf-isotopic compositions of zircons from claystones around the Permian-Triassic boundary in the Zunyi Section, South China: Implications for nature and tectonic setting of the volcanism

2015 ◽  
Vol 26 (6) ◽  
pp. 872-882 ◽  
Author(s):  
Qiuling Gao ◽  
Zhong-Qiang Chen ◽  
Ning Zhang ◽  
William L. Griffin ◽  
Wenchen Xia ◽  
...  
2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


2021 ◽  
Author(s):  
Zhenyang Zhao ◽  
Shuangjian Li ◽  
Genhou Wang ◽  
Jian Gao ◽  
Tianbo Yang ◽  
...  

2019 ◽  
Vol 132 (3-4) ◽  
pp. 521-544 ◽  
Author(s):  
Borhan Bagherpour ◽  
Hugo Bucher ◽  
Torsten Vennemann ◽  
Elke Schneebeli-Hermann ◽  
Dong-xun Yuan ◽  
...  

Abstract We present a new, biostratigraphically calibrated organic and inorganic C-isotope record spanning the basal Late Permian to earliest Triassic from southern Guizhou (Nanpanjiang basin, South China). After fluctuations of a likely diagenetic overprint are removed, three negative carbon isotope excursions (CIEs) persist. These include a short-lived CIE during the early Wuchiapingian, a protracted CIE ending shortly after the Wuchiapingian–Changhsingian Boundary, and a third CIE straddling the Permian–Triassic boundary. Comparison of our new C-isotope record with others from the same basin suggests that influences of local bathymetry and of the amount of buried terrestrial organic matter are of importance. Comparison with other coeval time series outside of South China also highlights that only the negative CIE at the Permian–Triassic boundary is a global signal. These differences can be explained by the different volumes of erupted basalts between the Late Permian Emeishan and the younger Siberian large igneous provinces and their distinct eruptive modalities. Emeishan volcanism was largely submarine, implying that sea water was an efficient buffer against atmospheric propagation of volatiles. The equatorial position of Emeishan was also an additional obstacle for volatiles to reach the stratosphere and benefit from an efficient global distribution. Consequently, the local significance of these CIEs calls into question global correlations based on C-isotope chemostratigraphy during the Late Permian. The timing of the Late Permian Chinese CIEs is also not reflected in changes in species diversity or ecology, unlike the sudden and global Permian–Triassic boundary crisis and subsequent Early Triassic upheavals.


Palaeontology ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 1301-1312 ◽  
Author(s):  
Z. Q. Chen ◽  
G. R. Shi ◽  
K. Kaiho

Sign in / Sign up

Export Citation Format

Share Document