Strong convergence theorem for a system of generalized mixed equilibrium problems and finite family of Bregman nonexpansive mappings in Banach spaces

OPSEARCH ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 584-603 ◽  
Author(s):  
Vahid Darvish
2012 ◽  
Vol 2012 ◽  
pp. 1-21
Author(s):  
Zhaoli Ma ◽  
Lin Wang ◽  
Yunhe Zhao

We introduce an iterative scheme for finding a common element of the set of solutions of generalized mixed equilibrium problems and the set of fixed points for countable families of total quasi-ϕ-asymptotically nonexpansive mappings in Banach spaces. We prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm in an uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property. The results presented in this paper improve and extend some recent corresponding results.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Mei Yuan ◽  
Xi Li ◽  
Xue-song Li ◽  
John J. Liu

Relatively nonexpansive mappings and equilibrium problems are considered based on a shrinking projection method. Using properties of the generalizedf-projection operator, a strong convergence theorem for relatively nonexpansive mappings and equilibrium problems is proved in Banach spaces under some suitable conditions.


Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Habtu Zegeye

In this paper, we study a strong convergence theorem for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. As a consequence, we prove convergence theorem for a common fixed point of a finite family of Bergman relatively nonexpansive mappings. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common zero of a finite family of Bregman inverse strongly monotone mappings and a solution of a finite family of variational inequality problems.


2010 ◽  
Vol 2010 ◽  
pp. 1-24 ◽  
Author(s):  
Yekini Shehu

We construct a new iterative scheme by hybrid methods and prove strong convergence theorem for approximation of a common fixed point of two countable families of weak relatively nonexpansive mappings which is also a solution to a system of generalized mixed equilibrium problems in a uniformly convex real Banach space which is also uniformly smooth using the properties of generalizedf-projection operator. Using this result, we discuss strong convergence theorem concerning generalH-monotone mappings and system of generalized mixed equilibrium problems in Banach spaces. Our results extend many known recent results in the literature.


2011 ◽  
Vol 2011 ◽  
pp. 1-22
Author(s):  
Yekini Shehu

We introduce a new iterative scheme by hybrid method for finding a common element of the set of common fixed points of infinite family of nonexpansive mappings, the set of common solutions to a system of generalized mixed equilibrium problems, and the set of solutions to a variational inequality problem in a real Hilbert space. We then prove strong convergence of the scheme to a common element of the three sets. We give some applications of our results. Our results extend important recent results.


Sign in / Sign up

Export Citation Format

Share Document