Consideration of green intelligent steel processes and narrow window stability control technology on steel quality

2021 ◽  
Vol 28 (8) ◽  
pp. 1264-1273 ◽  
Author(s):  
Lu Lin ◽  
Jia-qing Zeng
Author(s):  
Yi Liu ◽  
Tao Wang ◽  
Guofang Gong ◽  
Rujun Gao

AbstractElectro-hydraulic vibration equipment (EHVE) is widely used in vibration environment simulation tests, such as vehicles, weapons, ships, aerospace, nuclear industries and seismic waves replication, etc., due to its large output power, displacement and thrust, as well as good workload adaptation and multi-controllable parameters. Based on the domestic and overseas development of high-frequency EHVE, dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment. The research status and progress of high-frequency electro-hydraulic vibration control technology (EHVCT) are discussed, from the perspective of vibration waveform control and vibration controller. The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control, stability control, offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out. Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method, a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion. The new method can realize independent adjustment and control of vibration waveform frequency, amplitude and offset under high-frequency vibration conditions, and provide a new idea for accurate simulation of high-frequency vibration waveform.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 881
Author(s):  
Peng Wu ◽  
Liang Chen ◽  
Ming Li ◽  
Lan Wang ◽  
Xufeng Wang ◽  
...  

The surrounding rock control technology of mining roadways in large inclination seams with a weak structural plane in the roof is one of the most challenging fields in underground roadway support. In view of the serious deformation of the surrounding rock of the transportation roadway in the 1201 working face of a mine, the deformation and failure characteristics and instability mechanism of the surrounding rock of the roadway are analysed. The self-stability mechanical model of the roof block structure of the roadway with a large inclination under the support effect is established, and the support concept of “high pre-stressed asymmetric” and the combined support method of bolts, wire mesh, and cables are proposed. The rationality of the supporting scheme is verified by numerical simulation. The results show that: compared with bolt and wire mesh support, the maximum shear displacement of the roof’s weak layer under the combined support of bolt, wire meshes, and cable before and after mining is reduced by 86.78% and 83%, respectively, and the maximum total displacement of surrounding rock surface is reduced by 49.22% and 37.1%, respectively. The field monitoring results show that the combined support scheme can effectively control the deformation of the surrounding rock.


2011 ◽  
Vol 21 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Yang Yu ◽  
Jianbiao Bai ◽  
Ke Chen ◽  
Xiangyu Wang ◽  
Tongqiang Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document