Route optimization model in collaborative logistics network for mixed transportation problem considered cost discount based on GATS

2018 ◽  
Vol 10 (1) ◽  
pp. 409-416 ◽  
Author(s):  
Yirui Deng ◽  
Yao Zheng ◽  
Jianping Li
2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongrui Chu ◽  
Yahong Chen

Increased frequency of disasters keeps reminding us of the importance of effective resource distribution in postdisaster. To reduce the suffering of victims, this paper focuses on how to establish an effective emergency logistics system. We first propose a multiobjective optimization model in which the location and allocation decisions are made for a three-level logistics network. Three objectives, deprivation costs, unsatisfied demand costs, and logistics cost, are adopted in the proposed optimization model. Several cardinality and flow balance constraints are considered simultaneously. Then, we design a novel effective IFA-GA algorithm by combining the firefly algorithm and genetic algorithm to solve this complex model effectively. Furthermore, three schemes are proposed to improve the effectiveness of the IFA-GA algorithm. Finally, the numerical results provide several insights on the theory and practice of relief distribution, which also illustrate the validity of the proposed solution algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Haixing Wang ◽  
Guiping Xiao ◽  
Zhen Wei

Optimizing Route for Hazardous Materials Logistics (ORHML) belongs to a class of problems referred to as NP-Hard, and a strict constraint of it makes it harder to solve. In order to dealing with ORHML, an improved hybrid ant colony algorithm (HACA) was devised. To achieve the purpose of balancing risk and cost for route based on the principle of ACA that used to solve TSP, the improved HACA was designed. Considering the capacity of road network and the maximum expected risk limits, a route optimization model to minimize the total cost is established based on network flow theory. Improvement on route construction rule and pheromone updating rule was adopted on the basis of the former algorithm. An example was analyzed to demonstrate the correctness of the application. It is proved that improved HACA is efficient and feasible in solving ORHML.


Sign in / Sign up

Export Citation Format

Share Document