A High Efficiency and Low Carbon Oriented Machining Process Route Optimization Model and Its Application

Author(s):  
Zhaohui Deng ◽  
Lishu Lv ◽  
Wenliang Huang ◽  
Yangdong Shi
2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2015 ◽  
Vol 80 (5-8) ◽  
pp. 1181-1196 ◽  
Author(s):  
Qian Yi ◽  
Congbo Li ◽  
Xiaolong Zhang ◽  
Fei Liu ◽  
Ying Tang

2021 ◽  
Vol 2076 (1) ◽  
pp. 012072
Author(s):  
Jia Chen ◽  
Zhigang Jiang

Abstract The cutting process of used power battery is a key step for recycling its materials, and it is energy-intensive and high carbon emission process. To reduce the carbon emissions of the used power battery cutting process, the relationship between the carbon emissions of the cutting process and its process parameters was analyzed based on the safety requirements. Next, the multi-objective optimization model for cutting process parameters is established with the goal of minimum carbon emissions and shortest cutting time, which takes into account the constraints of the cutting device’s and the safety requirements. For the strong nonlinear characteristics of the optimization model, an improved PSO algorithm is used to solve the model. A case study of cutting a certain type of used power battery is illustrated to verify the validity of the established model.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


2013 ◽  
Vol 842 ◽  
pp. 634-638
Author(s):  
Yan Jing ◽  
Feng Zhao

By comparison, this paper determines inner bore processing technic program of the engineering machinery hydraulic cylinder block and makes some analysis of the rolling processing technic and relevant emerging issues to propose reasonable and feasible process route and process parameters and ensure the quality of the cylinder processing. It also shows the design of boring-rolling compound tools with high efficiency and high precision for given cylinders.


Author(s):  
Andre D. L. Batako ◽  
Valery V. Kuzin ◽  
Brian Rowe

High Efficiency Deep Grinding (HEDG) has been known to secure high removal rates in grinding processes at high wheel speed, relatively large depth of cut and moderately high work speed. High removal rates in HEDG are associated with very efficient grinding and secure very low specific energy comparable to conventional cutting processes. Though there exist HEDG-enabled machine tools, the wide spread of HEDG has been very limited due to the requirement for the machine tool and process design to ensure workpiece surface integrity. HEDG is an aggressive machining process that requires an adequate selection of grinding parameters in order to be successful within a given machine tool and workpiece configuration. This paper presents progress made in the development of a specialised HEDG machine. Results of HEDG processes obtained from the designed machine tool are presented to illustrate achievable high specific removal rates. Specific grinding energies are shown alongside with measured contact arc temperatures. An enhanced single-pole thermocouple technique was used to measure the actual contact temperatures in deep cutting. The performance of conventional wheels is depicted together with the performance of a CBN wheel obtained from actual industrial tests.


2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1389
Author(s):  
Wei Gao ◽  
Zifu Li ◽  
Siqi Zhang ◽  
Yuying Zhang ◽  
Pingfeng Fu ◽  
...  

To dispose of arsenic-containing tailings with low carbon and high efficiency, sodium sulphate (Na2SO4), sodium hydroxide (NaOH), calcium nitrate Ca(NO3)2 and calcium hydroxide Ca(OH)2 were independently added to metallurgical slag-based binder (MSB) solidification/stabilisation (S/S)-treated tailings (MSTs) to enhance the MST arsenic S/S performance. Results showed that only Ca(OH)2 could increase the unconfined compressive strength of MST from 16.3 to 20.49 MPa and decrease the leachate As concentration from 31 μg/L to below 10 μg/L. Na3AsO4·12H2O and NaAsO2 were used to prepare pure MSB paste for mechanism analysis. The results of microstructure analyses showed the high specific surface area and amorphous properties of calcium–sodium aluminosilicate hydrate facilitated the adsorption or solid-solution formation of As(V) and As(III). As(V) formed an inner-sphere complex in ettringite, whereas As(III) formed an outer-sphere complex, and the relatively larger size and charge of As(V) compared with SO42− restrict substitution inside channels without affecting the ettringite structure under high loading of As(V). The added Ca(OH)2 promoted the hydration reaction of MSBs and facilitated the formation of a Ca–As(V) precipitate with low solubility, from Ca4(OH)2(AsO4)2·4H2O (Ksp = 10−27.49) to Ca5(AsO4)3(OH) (Ksp = 10−40.12). This work is beneficial for the application of cement-free MSB in the S/S process.


Sign in / Sign up

Export Citation Format

Share Document