Multi-objective Machining Process Route Optimization Model for High Efficiency and Low Carbon

2014 ◽  
Vol 50 (17) ◽  
pp. 133 ◽  
Author(s):  
Congbo LI
2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2015 ◽  
Vol 80 (5-8) ◽  
pp. 1181-1196 ◽  
Author(s):  
Qian Yi ◽  
Congbo Li ◽  
Xiaolong Zhang ◽  
Fei Liu ◽  
Ying Tang

2021 ◽  
Vol 2076 (1) ◽  
pp. 012072
Author(s):  
Jia Chen ◽  
Zhigang Jiang

Abstract The cutting process of used power battery is a key step for recycling its materials, and it is energy-intensive and high carbon emission process. To reduce the carbon emissions of the used power battery cutting process, the relationship between the carbon emissions of the cutting process and its process parameters was analyzed based on the safety requirements. Next, the multi-objective optimization model for cutting process parameters is established with the goal of minimum carbon emissions and shortest cutting time, which takes into account the constraints of the cutting device’s and the safety requirements. For the strong nonlinear characteristics of the optimization model, an improved PSO algorithm is used to solve the model. A case study of cutting a certain type of used power battery is illustrated to verify the validity of the established model.


2020 ◽  
Vol 21 (2) ◽  
pp. 213-224
Author(s):  
Aprilia Dityarini ◽  
Eko Pujiyanto ◽  
I Wayan Suletra

Sustainable manufacturing aspects are environmental, economic, and social. These aspects can be applied to an optimization model in the machining process. An optimization model is needed to determine the optimum cutting parameters. This research develops a multi-objective optimization model that can optimize cutting parameters on a multi-pass turning. Decision variables are cutting parameters multi-pass turning. This research has three objective functions for minimizing energy, carbon emissions, and costs. Three functions are searched for optimal values using the GEKKO.  A numerical example is given to show the implementation of the model and solved using GEKKO and Interior Point Optimizer (IPOPT). The results of optimization indicate that the model can be used to optimize the cutting parameters.


Author(s):  
Hui Hu ◽  
Jianliang Li ◽  
Xudong Zhao

Taking environmental concerns into consideration, a logistics distribution center location-route multi-objective optimization model and its solving algorithm are studied in multi-modal transport network context. The objective functions in the model include total operation cost, delivery time and carbon emission goals. The model’s decision variables are product volumes with different transport modes and the constraints concerned with investment budget, limited capacity etc. Aimed at the model structure, a two-stage heuristic solving algorithm for single objective model is put forward and its validity is proved. On the basis of solutions which are searched by the heuristic solving algorithm, an optimal solution is obtained using one of multi-objective evaluation methods. Finally, a large scale multi-modal distribution network example is provided to illustrate feasibility and effectiveness of the model and the algorithm by comparing solving efficiency and results, and it finds a railway-based multi-modal transport network has the most competitive advantage.


2013 ◽  
Vol 19 (6) ◽  
pp. 1784-1788
Author(s):  
Xiaohua Song ◽  
Dongxiao Niu ◽  
Pie Zu ◽  
Lingqing Chen ◽  
Caiqin Ye

Sign in / Sign up

Export Citation Format

Share Document