Hybrid GSW and DM based fully homomorphic encryption scheme for handling false data injection attacks under privacy preserving data aggregation in fog computing

2020 ◽  
Vol 11 (11) ◽  
pp. 5217-5231
Author(s):  
A. Amuthan ◽  
R. Sendhil
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2659 ◽  
Author(s):  
Yinghui Zhang ◽  
Jiangfan Zhao ◽  
Dong Zheng ◽  
Kaixin Deng ◽  
Fangyuan Ren ◽  
...  

As an extension of cloud computing, fog computing has received more attention in recent years. It can solve problems such as high latency, lack of support for mobility and location awareness in cloud computing. In the Internet of Things (IoT), a series of IoT devices can be connected to the fog nodes that assist a cloud service center to store and process a part of data in advance. Not only can it reduce the pressure of processing data, but also improve the real-time and service quality. However, data processing at fog nodes suffers from many challenging issues, such as false data injection attacks, data modification attacks, and IoT devices’ privacy violation. In this paper, based on the Paillier homomorphic encryption scheme, we use blinding factors to design a privacy-preserving data aggregation scheme in fog computing. No matter whether the fog node and the cloud control center are honest or not, the proposed scheme ensures that the injection data is from legal IoT devices and is not modified and leaked. The proposed scheme also has fault tolerance, which means that the collection of data from other devices will not be affected even if certain fog devices fail to work. In addition, security analysis and performance evaluation indicate the proposed scheme is secure and efficient.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Shuangjie Bai ◽  
Geng Yang ◽  
Jingqi Shi ◽  
Guoxiu Liu ◽  
Zhaoe Min

The issue of the privacy-preserving of information has become more prominent, especially regarding the privacy-preserving problem in a cloud environment. Homomorphic encryption can be operated directly on the ciphertext; this encryption provides a new method for privacy-preserving. However, we face a challenge in understanding how to construct a practical fully homomorphic encryption on non-integer data types. This paper proposes a revised floating-point fully homomorphic encryption scheme (FFHE) that achieves the goal of floating-point numbers operation without privacy leakage to unauthorized parties. We encrypt a matrix of plaintext bits as a single ciphertext to reduce the ciphertext expansion ratio and reduce the public key size by encrypting with a quadratic form in three types of public key elements and pseudo-random number generators. Additionally, we make the FFHE scheme more applicable by generalizing the homomorphism of addition and multiplication of floating-point numbers to analytic functions using the Taylor formula. We prove that the FFHE scheme for ciphertext operation may limit an additional loss of accuracy. Specifically, the precision of the ciphertext operation’s result is similar to unencrypted floating-point number computation. Compared to other schemes, our FFHE scheme is more practical for privacy-preserving in the cloud environment with its low ciphertext expansion ratio and public key size, supporting multiple operation types and high precision.


Sign in / Sign up

Export Citation Format

Share Document