expansion ratio
Recently Published Documents


TOTAL DOCUMENTS

769
(FIVE YEARS 234)

H-INDEX

30
(FIVE YEARS 5)

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Iosif Moulinos ◽  
Christos Manopoulos ◽  
Sokrates Tsangaris

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 553
Author(s):  
Jaehoon Park ◽  
Chanhee Won ◽  
Hye-Jin Lee ◽  
Jonghun Yoon

In this paper, we propose a new method to estimate the hole expansion ratio (HER) using an integrated analysis system. To precisely measure the HER, three kinds of analysis methods (computer vision, punch load, and acoustic emission) were utilized to detect edge cracks during a hole expansion test. Cracks can be recognized by employing both computer vision and a punch load analysis system to determine the moment of crack initiation. However, the acoustic emission analysis system has difficulty detecting the instant of crack appearance since the magnitude of the audio signal is drowned out by noise from the press, which interrupts the differentiation of crack configuration. To enhance the accuracy for determining the HER, an integrated analysis system that combines computer vision with punch load analysis, and improves on the shortcomings of each analysis system, is newly suggested.


2022 ◽  
Author(s):  
Andrej Lizunov ◽  
V V Maximov ◽  
Andrey Sandomirsky

Abstract The recently developed Doppler spectroscopy diagnostic has been used to evaluate the height of the ambipolar potential barrier forming in the gas dynamic trap (GDT) plasma between the central cell and the region with a large magnetic expansion ratio beyond the mirror. The diagnostic technique based on the gas jet charge exchange target, allowed to measure the potential profile along the line of sight covering the radial range from the axis to the limiter. The on-axis potential drop was found to be 2.6÷3.1 in units of the central plane electron temperature, which supports the existing theoretical understanding of suppression of electron thermal conductivity in the GDT expander.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 107
Author(s):  
Xinquan Wang ◽  
Yichen Que ◽  
Kangyu Wang ◽  
Hongguo Diao ◽  
Yunliang Cui ◽  
...  

Rigid-flexible composite pouch piles with expanded bottom (RFCPPEB) are generally considered as new symmetrical piles in practical engineering, but their bearing characteristics and design method are still not completely understood. The objective of this study is to investigate the vertical bearing performance and the optimal design scheme of RFCPPEB. Hence, laboratory modeling tests for this symmetric structure and an ABAQUS three-dimensional (3D) numerical simulation analysis were used to study the vertical bearing characteristics on bottom-expanded piles and rigid-flexible composite piles with expanded bottom. The vertical bearing capacity, shaft resistance, pile tip resistance distribution rule, and load sharing ratio of RFCPPEB were analyzed and verified using different bottom expansion dimensions and cemented soil thicknesses. The results revealed that the optimal bottom expansion ratio of rigid bottom-expanded piles was 1.8 when the ratio of pile body to bottom-expanded pile head was 9:1. When the bottom expansion ratio (D/d) was increased, the bearing capacity of bottom-expanded piles was significantly increased at D/d = 1.4 and D/d = 1.8 compared to that of D/d = 1.0, reaching 1.67 and 2.29 times, respectively, while for D/d = 1.6 and D/d = 2.0, the ultimate bearing capacity remained unchanged. Besides, shaft resistance played an important role in the bearing process of the rigid bottom-expanded piles and RFCPPEB. When the shaft resistance was increased, the ultimate bearing capacity of the pile foundation was significantly improved. The shaft resistance of RFCPPEB was increased with increasing cemented soil thickness. The increases in the shaft resistance and thickness of the cemented soil showed a nonlinear growth, and the maximum shaft resistance was approximately 75 cm from the pile top. When the diameter of the expanded head was 1.8 times the diameter of the pipe pile and slightly larger than the thickness of the cemented soil (0.5 times the diameter of the pipe pile), the optimal amount of concrete 425.5 kN/m3 required for per unit volume around piles was obtained, with the RFCPPEB ultimate bearing capacity of 7.5 kN. For RFCPPEB, the soil pressure at the pile tip was directly proportional to the pile top load under small load and was decreased in the form of a half quadric curve under large load. It reached the most reasonable position where the slope of the quadric curve was the largest when the thickness of the cemented soil was larger than 0.5 times the diameter of the pipe pile.


Author(s):  
Vivek Gupta ◽  
Arnab Chanda

Abstract Skin graft expansion is the key to the treatment of severe burn injuries requiring skin transplantation. While high expansions have been claimed by a majority of graft manufacturers, the realistic expansions reported to date with skin grafts are much lower. To clarify this discrepancy, we attempted to understand the biomechanics of skin grafts through the study of common graft pattern sizes, spacing, and orientation, and their influence on mesh expansion and induced stress. A novel skin simulant material and additive manufacturing were employed to develop the skin graft models. Tensile testing experiments were conducted to study expansion and overall stresses, and a finite element model (FEM) was used to characterize the local trends. At low strains (i.e., <1), the mesh expansion ratio was reported to be below 1, which increased up to 1.93 at a high strain of 2. The pattern size and spacing were not observed to affect the expansion much (i.e., <10%). With a change in orientation, the expansion decreased across all graft models and strains. High localized induced stresses were reported for high strains, which varied with graft orientation. The novel observations highlight the achievable expansions without overstressing, with standard slit patterning in skin grafts. These findings will not only help achieve better mesh expansion outcomes in burn surgeries but also guide the development of novel graft patterns for enhanced expansion in the future.


Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


2022 ◽  
Vol 5 (1) ◽  
pp. 44
Author(s):  
Pranabendu Mitra ◽  
Sagar Khanvilkar ◽  
Sai Kumar Samudrala ◽  
Kaushal Sunil Shroff

The main objective of this study was to convert the cranberry pomace into value-added extruded cereals/snacks blending with rice flour using a single screw extruder based on the physicochemical properties of extrudates because utilization of the byproduct cranberry pomace would be necessary for the growth of cranberry juice processing industries and the extruded snacks/cereals with higher fiber and antioxidant and less carbohydrate would be required to fulfill the consumers’ demand. The six different formulations by blending 0, 5, 10, 15, 20 and 25% cranberry pomace with 100, 95, 90, 85, 80 and 75% of rice flour, respectively, were extruded using a single screw extruder. The temperature (150℃), screw speed (270 rpm), feed rate (20 Kg/hr) and feed moisture content (35%) were constant during extrusion. The physicochemical properties of the extrudates were characterized to determine the desirable formulations. The results indicated that radial expansion ratio (1.11-1.67), the solid density (0.71-0.76 g/mL), piece density (0.20-0.63 g/mL), porosity (14.49-72.38%), hardness (23-157.73 N), crispness (4.17-13.5), moisture content (3.22-4.39%), water activity (0.14-0.36) and the water solubility (7.07-30.80%) of rice flour and cranberry pomace blend extrudates were varied depending on the combinations of the rice flour and cranberry pomace. The results revealed that up to 20% cranberry pomace could be added with 75-80% rice flour to develop high fiber and antioxidant with less carbohydrate cereal/snack products. The utilization of cranberry pomace combining with rice flour through extrusion process can provide a unique opportunity to generate healthier snacks and cereals that have higher fiber and antioxidant and low carbohydrate.


In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 276
Author(s):  
Zhiquanquan Wang ◽  
Zifeng Guo ◽  
Chengjia Shang ◽  
Bin Chen ◽  
Yajun Hui

Variant pairs have an indispensable function on mechanical properties such as low impact toughness. Therefore, it was assumed that they would also affect the HER (Hole Expansion Ratio, an indicator to evaluate stretch flanging performance). To clarify this, a comprehensive analysis of the common influential factors in an 800 MPa grade low carbon micro-alloyed steel, i.e., the retained austenite, the M/A (Martensite/Austenite) island, the titanium precipitations, the grain diameter, the density of high angle grain boundaries and the textures, was first conducted. It was found that they did not match well with the HER, suggesting that they were not the governing factor for HER in this steel. However, the dominating crystallography groups and the variant pairing results indicated that they fitted well with the HER. In the samples with high HERs, the CP (Close Packed) groups dominated the transformation, wherein one individual CP group consisted of two or more Bain groups, whereas it evolved into the domination of joint CP groups and Bain groups for the low HER sample. Further analysis on the variant pairing features indicated that a correlation occurred between the HER and the high angle variant pairs. In the steels with high HERs, high-angle variant pairs of V1/V2, V1/V3 that transformed from the same CP group, particularly of V1/V2 pair, were mostly generated. They turned to V1/V9, V1/V10, V1/V12, V1/V15, V1/V17, and V1/V18 pairs from differential CP groups, especially the V1/V12 and V1/V15 pair for low-HER steel. This result showed that V1/V2, V1/V12, and V1/V15 might have accounted most for the HER in this steel. The underlying reason was that the V1/V2 pair was specialized in supplying a slip passage for dislocation transmission across a grain boundary with little resistance, whereas the dislocation transmission ability for V1/V12 and V1/V15 pair was particularly poor. Thus, to efficiently enhance the HER, one should regulate the variant pairs by augmenting the V1/V2 fraction and suppressing the formation of the V1/V12 and V1/V15 pair.


Sign in / Sign up

Export Citation Format

Share Document