Seismic stability analysis of soil nail reinforced slope using kinematic approach of limit analysis

2011 ◽  
Vol 66 (1) ◽  
pp. 319-326 ◽  
Author(s):  
Siming He ◽  
Chaojun Ouyang ◽  
Yu Luo
2018 ◽  
Vol 149 ◽  
pp. 02026
Author(s):  
Mounir Belghali ◽  
Zied Saada

The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.


2021 ◽  
Vol 112 ◽  
pp. 103904
Author(s):  
Fabricio Fernández ◽  
Jhonatan E.G. Rojas ◽  
Eurípedes A. Vargas ◽  
Raquel Q. Velloso ◽  
Daniel Dias

2018 ◽  
Vol 15 (6) ◽  
pp. 1331-1341 ◽  
Author(s):  
Li-jun Su ◽  
Chang-ning Sun ◽  
Fang-wei Yu ◽  
Sarfraz Ali

Sign in / Sign up

Export Citation Format

Share Document