slip surfaces
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 57)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zhiqiang Fan ◽  
Yanhao Zheng

Abstract In the Three Gorges Reservoir (TGR) area, the accumulation landslide characterized by stepped slip surfaces is widely developed, and its stability is significantly affected by the fluctuation of reservoir water level. In this paper, the Shuping landslide, a typical accumulation landslide in the TGR area, was selected to study the effect of water level fluctuations on landslide stability. Based on Multi-Circular (M-C) model, it is found that the decline of reservoir water level was the dominant factor causing the decrease of landslide stability. At the end of the decline of reservoir water level, the landslide stability was minimum and the corresponding moment was the most dangerous. The effect of the drawdown speed of reservoir water level on the minimum value of landslide stability had a threshold effect, although the minimum stability coefficient of landslide decreased with the increase of drawdown speed. Under the most dangerous water level conditions, the stability of the piled landslide increased linearly with the increase of the net thrust of piles. Also, by comparing with other classical models, the effectiveness of the M-C model in evaluating landslide stability under the dynamic changes of reservoir water level was verified. The results could provide a reliable scientific basis for improving the stability analysis and reinforcement measures of the accumulation landslide with the multi-circular slip surfaces in the TGR area, as well as can be applied to similar landslides in reservoir areas.


2021 ◽  
Author(s):  
Abdelwahab Noufal

Abstract Abu Dhabi subsurface fault populations triggered basin system in diverse directions, because of their significant role as fluid pathways. Studying fault infill materials, fault geometries, zone architecture and sealing properties from outcrops as analogues to the subsurface of Abu Dhabi, and combining these with well data and cores are the main objectives of this paper. The fault core around the fault plane and in areas of overlap between fault segments and around the fault tip include slip surfaces and deformed rocks such as fault gouge, breccia, and lenses of host rock, shale smear, salt flux and diagenetic features. Structural geometry of the fault zone architecture and fault plane infill is mainly based on the competency contrast of the materials, that are behaving in ductile or in a brittle manner, which are distributed in the subsurface of Abu Dhabi sedimentary sequences with variable thicknesses. Brittleness is producing lenses, breccia and gouge, while, ductile intervals (principally shales and salt), evolved in smear and flux. The fault and fractures are behaving in a sealy or leaky ways is mainly dependent on the percentage of these materials in the fault deformation zone. The reservoir sections distancing from shale and salt layers are affected by diagenetic impact of the carbonates filling fault zones by recrystallized calcite and dolomite. Musandam area, Ras Al Khaima (RAK), and Jabal Hafit (JH) on the northeast- and eastern-side of the UAE represents good surface analogues for studying fault materials infill characteristics. To approach this, several samples, picked from fault planes, were analysed. NW-trending faults system show more dominant calcite, dolomite, anhydrites and those closer to salt and shale intervals are showing smearing of the ductile infill. The other linked segments and transfer faults of other directions are represented by a lesser percentage of infill. In areas of gravitational tectonics, the decollement ductile interval is intruded in differently oriented open fractures. The studied outcrops of the offshore salt islands and onshore Jabal Al Dhanna (JD) showing salt flux in the surrounding layers that intruded by the salt. The fractures and faults of the surrounding layers and the embedment insoluble layers are highly deformed and showing nearly total seal. As the salt behaving in an isotropic manner, the deformation can be measured clearly by its impact on the surrounding and embedment's insoluble rocks. The faults/fractures behaviour is vicious in migrating hydrocarbons, production enhancement and hydraulic fracturing propagation.


2021 ◽  
Vol 53 (6) ◽  
pp. 065502
Author(s):  
Ming C Lee ◽  
Huan J Keh

Abstract The steady rotation of a slip spherical particle about a diameter lying along the longitudinal axis of a slip circular tube filled with an incompressible Newtonian fluid at low Reynolds numbers is analyzed. To solve the Stokes equations for the fluid flow, the solution is constituted by the summation of general solutions in both cylindrical and spherical coordinates. The boundary conditions are implemented first along the tube wall via the Fourier cosine transform and then over the particle surface through a collocation method. Results of the resisting torque acting on the particle are obtained for various values of the relevant dimensionless parameters. The effect of the confining tube on the axisymmetric rotation of the particle with slip surfaces is interesting. The torque increases monotonically with an increase in the stickiness of the tube wall, keeping the other parameters unchanged. When the stickiness of the tube wall is greater than a critical value, the torque is greater than that on the particle in an unbounded identical fluid and increases with increases in the stickiness of the particle surface and particle-to-tube radius ratio. When the stickiness of the tube wall is less than the critical value, conversely, the torque is smaller than that on the unconfined particle and decreases with increases in the particle stickiness and radius ratio.


Geosphere ◽  
2021 ◽  
Author(s):  
M.L. Odlum ◽  
A.K. Ault ◽  
M.A. Channer ◽  
G. Calzolari

Exhumed fault rocks provide a textural and chemical record of how fault zone composition and architecture control coseismic temperature rise and earthquake mechanics. We integrated field, microstructural, and hematite (U-Th)/He (He) thermochronometry analyses of exhumed minor (square-centimeter-scale surface area) hematite fault mirrors that crosscut the ca. 1400 Ma Sandia granite in two localities along the eastern flank of the central Rio Grande rift, New Mexico. We used these data to characterize fault slip textures; evaluate relationships among fault zone composition, thickness, and inferred magnitude of friction-generated heat; and document the timing of fault slip. Hematite fault mirrors are collocated with and crosscut specular hematite veins and hematite-cemented cataclasite. Observed fault mirror microstructures reflect fault reactivation and strain localization within the comparatively weaker hematite relative to the granite. The fault mirror volume of some slip surfaces exhibits polygonal, sintered hematite nanoparticles likely created during coseismic temperature rise. Individual fault mirror hematite He dates range from ca. 97 to 5 Ma, and ~80% of dates from fault mirror volume aliquots with high-temperature crystal morphologies are ca. 25–10 Ma. These aliquots have grain-size–dependent closure temperatures of ~75–108 °C. A new mean apatite He date of 13.6 ± 2.6 Ma from the Sandia granite is consistent with prior low-temperature thermochronometry data and reflects rapid, Miocene rift flank exhumation. Comparisons of thermal history models and hematite He data patterns, together with field and microstructural observations, indicate that seismicity along the fault mirrors at ~2–4 km depth was coeval with rift flank exhumation. The prevalence and distribution of high-temperature hematite grain morphologies on different slip surfaces correspond with thinner deforming zones and higher proportions of quartz and feldspar derived from the granite that impacted the bulk strength of the deforming zone. Thus, these exhumed fault mirrors illustrate how evolving fault material properties reflect but also govern coseismic temperature rise and associated dynamic weakening mechanisms on minor faults at the upper end of the seismogenic zone.


2021 ◽  
Author(s):  
◽  
Nathaniel Joseph Lund

<p>In this thesis, homogenization and perturbation methods are used to derive analytic expressions for effective slip lengths for Stokes flow over rough, mixed-slip surfaces, where the roughness is periodic, and the variation in slip length has the same period. If the classical no-slip boundary condition of fluid mechanics is relaxed, the slip velocity of the fluid at the surface is non-zero. For simple shear flow, the slip velocity is proportional to the shear rate. The constant of proportionality has dimensions of length and is known as the slip length. Any variation in the slip length over the surface will cause a perturbation to the flow adjacent to the surface. Due to the diffusion of momentum, at sufficient height above the surface, the flow perturbations have diminished, and flow is smooth and uniform. The velocity and shear rate at this height imply an effective slip length of the surface. The purpose of this thesis is to predict that effective slip length.  Homogenization is a technique for finding approximate solutions to partial differential equations. The essence of homogenization is to construct a mathematical model of a physical problem featuring some periodic heterogeneity, then generate a sequence of models such that the period in question reduces with each increment in the sequence. If the sequence is appropriately defined, it has a limit model in the limit of vanishing period, for which a solution can be found. The solution to the limit system is an approximation to the solutions of systems with a finite period.  We use homogenization to find the effective slip length of a system of Stokes flow over a periodically rough surface, described by periodic function h(x; y), with a local slip length b(x; y) varying with the same period. For systems where the period L is smaller than both the domain height P and typical slip lengths, the effective slip length bₑff is well-approximated by the harmonic mean of local slip lengths, weighted by area of contact between liquid and surface: [See 'Thesis' document below for equation.]  We further use a perturbation technique to verify the above expression in the special case of a flat surface, and to derive another effective slip length expression: For a flat surface with local slip lengths much smaller than the period and domain height, the effective slip length bₑff is well-approximated by the area-weighted average of local slip lengths: [See 'Thesis' document below for equation.]</p>


2021 ◽  
Author(s):  
◽  
Nathaniel Joseph Lund

<p>In this thesis, homogenization and perturbation methods are used to derive analytic expressions for effective slip lengths for Stokes flow over rough, mixed-slip surfaces, where the roughness is periodic, and the variation in slip length has the same period. If the classical no-slip boundary condition of fluid mechanics is relaxed, the slip velocity of the fluid at the surface is non-zero. For simple shear flow, the slip velocity is proportional to the shear rate. The constant of proportionality has dimensions of length and is known as the slip length. Any variation in the slip length over the surface will cause a perturbation to the flow adjacent to the surface. Due to the diffusion of momentum, at sufficient height above the surface, the flow perturbations have diminished, and flow is smooth and uniform. The velocity and shear rate at this height imply an effective slip length of the surface. The purpose of this thesis is to predict that effective slip length.  Homogenization is a technique for finding approximate solutions to partial differential equations. The essence of homogenization is to construct a mathematical model of a physical problem featuring some periodic heterogeneity, then generate a sequence of models such that the period in question reduces with each increment in the sequence. If the sequence is appropriately defined, it has a limit model in the limit of vanishing period, for which a solution can be found. The solution to the limit system is an approximation to the solutions of systems with a finite period.  We use homogenization to find the effective slip length of a system of Stokes flow over a periodically rough surface, described by periodic function h(x; y), with a local slip length b(x; y) varying with the same period. For systems where the period L is smaller than both the domain height P and typical slip lengths, the effective slip length bₑff is well-approximated by the harmonic mean of local slip lengths, weighted by area of contact between liquid and surface: [See 'Thesis' document below for equation.]  We further use a perturbation technique to verify the above expression in the special case of a flat surface, and to derive another effective slip length expression: For a flat surface with local slip lengths much smaller than the period and domain height, the effective slip length bₑff is well-approximated by the area-weighted average of local slip lengths: [See 'Thesis' document below for equation.]</p>


2021 ◽  
Vol 2083 (2) ◽  
pp. 022063
Author(s):  
Yaming Zhang ◽  
Dongsheng Chen ◽  
Jinlong Liu ◽  
Lei Zhu

Abstract Based on the finite element method, the earth pressure and deformation of the cantilever retaining wall composed of upper wall and lower wall are compared and analyzed. The results show that the maximum lateral displacement of the fill occurs near the top of the upper wall, the lower wall has the tendency of overturning to the free surface, while the upper wall has a certain deviation from the free surface. The vertical earth pressure acting on the heel plate of the upper wall and the lower wall presents non-linear characteristics. When the cantilever retaining wall composed of upper wall and lower wall is unstable, there are two slip surfaces in the filling. The first slip surface runs through the filling based on the heel plate root of the lower wall, and the second slip surface runs through the upper filling based on the heel plate root of the upper wall.


2021 ◽  
Vol 7 (5) ◽  
pp. 933-937
Author(s):  
Wang Huiwei ◽  
Zhang Dehao ◽  
Li Zuozhou ◽  
Yang Jie ◽  
Xue Fangfang ◽  
...  

Objectives: A study of remote sensing detection of slip surfaces on man-made slopes in a natural environment nearby a large tobacco growing plantation. Based on the GPR method, the image characteristics of potential slip surfaces on slopes are analyzed based on the change in GPR wave amplitude caused by the water content of the slip surface. The large granularity and permeability of the spoil allows natural precipitation to continue to infiltrate into the bedrock, and the infiltrated water gradually erodes the spoil and forms a water-rich rubble layer with the easily soluble rock mass, which develops into a slip zone and threatens the stability of the slope nearby a large tobacco growing plantation. By analyzing the magnitude of the remote sensing images, the process of water content changes in the soft fracture zone at the bedrock interface of the slope can be efficiently and accurately understood. Ensured the safe operation of the planted tobacco plantation.


2021 ◽  
Author(s):  
Vladimir Cheverda ◽  
Vadim Lisitsa ◽  
Maksim Protasov ◽  
Galina Reshetova ◽  
Andrey Ledyaev ◽  
...  

Abstract To develop the optimal strategy for developing a hydrocarbon field, one should know in fine detail its geological structure. More and more attention has been paid to cavernous-fractured reservoirs within the carbonate environment in the last decades. This article presents a technology for three-dimensional computing images of such reservoirs using scattered seismic waves. To verify it, we built a particular synthetic model, a digital twin of one of the licensed objects in the north of Eastern Siberia. One distinctive feature of this digital twin is the representation of faults not as some ideal slip surfaces but as three-dimensional geological bodies filled with tectonic breccias. To simulate such breccias and the geometry of these bodies, we performed a series of numerical experiments based on the discrete elements technique. The purpose of these experiments is the simulation of the geomechanical processes of fault formation. For the digital twin constructed, we performed full-scale 3D seismic modeling, which made it possible to conduct fully controlled numerical experiments on the construction of wave images and, on this basis, to propose an optimal seismic data processing graph.


Sign in / Sign up

Export Citation Format

Share Document