Seasonal variations of particulate silicon in the Changjiang (Yangtze River) Estuary and its adjacent area

2013 ◽  
Vol 32 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Lu Cao ◽  
Sumei Liu ◽  
Jingling Ren
2008 ◽  
Vol 28 (3) ◽  
pp. 1174-1182 ◽  
Author(s):  
Zuo Tao ◽  
Wang Jun ◽  
Jin Xianshi ◽  
Li Zhongyi ◽  
Tang Qisheng

2012 ◽  
Vol 209-211 ◽  
pp. 1910-1914
Author(s):  
Qiang An ◽  
Lu Lin ◽  
Yuan Yuan Liu ◽  
Ning Qiu Huang ◽  
Bin Zhao

The Yangtze River Estuary has become increasingly challenged by various destructive threats to its ecosystem such as the frequent occurrence of harmful algal blooms. Four cruises were carried out in the Yangtze River Estuary and its adjacent area in 2006. Ten variables including CODMn, PO43--P, SiO3-Si, NO3--N, NO2--N, NH4+-N, TN, TP, TOC and chl-a were analyzed by exploratory data analysis. Nitrate was the dominant form of TN throughout the year. Principal component analysis (PCA) was applied to estimate the sources of nutrients contamination in 2006. Two principal components (PCs) were extracted, namely, CODMn, PO43--P, NO3--N and TN for PC1, NO2--N and chl-a for PC2. Influenced by anthropogenic sewage, PC1 near Shidongkou, Bailonggang, Xinhe and Zhuyuan outlets was higher than other stations. The primary influencing factor of PC1 were the contaminants carried by runoff from the Yangtze River. And the dominating factors of eutrophication in 2006 were CODMn, PO43--P, NO3--N, TN and chl-a in the Yangtze River Estuary and its adjacent area.


2019 ◽  
Vol 39 (13) ◽  
Author(s):  
范海梅 FAN Haimei ◽  
蒋晓山 JIANG Xiaoshan ◽  
纪焕红 JI Huanhong ◽  
刘鹏霞 LIU Pengxia ◽  
胡茂桂 HU Maogui ◽  
...  

2010 ◽  
Vol 7 (3) ◽  
pp. 3125-3151 ◽  
Author(s):  
G.-L. Zhang ◽  
J. Zhang ◽  
S.-M. Liu ◽  
J.-L. Ren ◽  
Y.-C. Zhao

Abstract. Dissolved nitrous oxide (N2O) was measured in the waters of the Changjiang (Yangtze River) Estuary and its adjacent marine area during five surveys covering the period of 2002–2006. Dissolved N2O concentrations ranged from 6.04 to 21.3 nM, and indicate seasonal variations with high values occurring in summer and spring. Dissolved riverine N2O was observed monthly at station Xuliujing of the Changjiang, and ranged from 12.4 to 33.3 nM with an average of 20.8±7.8 nM. The average annual input of N2O from the Changjiang to the estuary and its adjacent area was estimated to be 15.8×106 mol/yr. N2O emission rates from the sediments of the Changjiang Estuary in spring ranged from −1.88 to 2.02 μmol m−2 d−1, which suggest that sediment can act as either a source or a sink of N2O in the Changjiang Estuary. The annual sea to air N2O fluxes from the Changjiang Estuary were estimated to be 6.8±3.7, 13.3±7.2 and 14.9±8.3 μmol m−2 d−1 using LM86, W92 and RC01 relationships, respectively. The annual sea to air N2O fluxes from the adjacent marine area were estimated to be 8.5±7.8, 15.3±13.5 and 17.4&plusmn15.7 μmol m−2 d−1 using LM86, W92 and RC01 relationship, respectively. Hence the Changjiang Estuary and its adjacent marine area is a net source of atmospheric N2O.


Sign in / Sign up

Export Citation Format

Share Document