seasonal variations
Recently Published Documents


TOTAL DOCUMENTS

6667
(FIVE YEARS 1097)

H-INDEX

109
(FIVE YEARS 13)

2022 ◽  
Vol 170 ◽  
pp. 104309
Author(s):  
Camille D'Hervilly ◽  
Isabelle Bertrand ◽  
Yvan Capowiez ◽  
Camille Béral ◽  
Léa Delapré-Cosset ◽  
...  

2022 ◽  
Vol 86 ◽  
pp. 102476
Author(s):  
Keisuke Suganuma ◽  
Mitsunori Kayano ◽  
Katsuya Kida ◽  
Yrjö T. Gröhn ◽  
Ryotaro Miura ◽  
...  

2022 ◽  
Vol 22 (1) ◽  
pp. 561-575
Author(s):  
Jiaxing Sun ◽  
Zhe Wang ◽  
Wei Zhou ◽  
Conghui Xie ◽  
Cheng Wu ◽  
...  

Abstract. Atmospheric aerosols play an important role in the radiation balance of the earth–atmosphere system. However, our knowledge of the long-term changes in equivalent black carbon (eBC) and aerosol optical properties in China is very limited. Here we analyze the 9-year measurements of eBC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in eBC by 71 % from 6.25 ± 5.73 µg m−3 in 2012 to 1.80 ± 1.54 µg m−3 in 2020 and 47 % decreases in the light extinction coefficient (bext, λ = 630 nm) of fine particles due to the Clean Air Action Plan that was implemented in 2013. The seasonal and diurnal variations of eBC illustrated the most significant reductions in the fall and at nighttime, respectively. ΔeBC / ΔCO also showed an annual decrease from ∼ 7 to 4 ng m−3 ppbv−1 and presented strong seasonal variations with high values in spring and fall, indicating that primary emissions in Beijing have changed significantly. As a response to the Clean Air Action Plan, single-scattering albedo (SSA) showed a considerable increase from 0.79 ± 0.11 to 0.88 ± 0.06, and mass extinction efficiency (MEE) increased from 3.2 to 3.8 m2 g−1. These results highlight the increasing importance of scattering aerosols in radiative forcing and a future challenge in visibility improvement due to enhanced MEE. Brown carbon (BrC) showed similar changes and seasonal variations to eBC during 2018–2020. However, we found a large increase of secondary BrC in the total BrC in most seasons, particularly in summer with the contribution up to 50 %, demonstrating an enhanced role of secondary formation in BrC in recent years. The long-term changes in eBC and BrC have also affected the radiative forcing effect. The direct radiative forcing (ΔFR) of BC decreased by 67 % from +3.36 W m−2 in 2012 to +1.09 W m−2 in 2020, and that of BrC decreased from +0.30 to +0.17 W m−2 during 2018–2020. Such changes might have important implications for affecting aerosol–boundary layer interactions and the improvement of future air quality.


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 439-446
Author(s):  
A. K. SRIVASTAVA ◽  
K. C. SINHA RAY ◽  
RUTA KULKARNI

Global warming due to increase in the Green House Gases is now well known. There are  several studies, also, suggesting discernible changes over the years in respect of meteorological parameters like, rainfall events, frequency and intensity of tropical cyclones/hurricanes, maximum/minimum temperature, SST of oceans etc, on regional as well as global scale.  The present study besides finding out seasonal variations in tropopause height and temperature across each 5° latitude over India based on a longer data set, has demarcated the locations where significant trend in respect of temperature and height was observed over Indian region on annual scale besides investigating the possible causes of this trend.  The study has also confirmed significant linear associationship between tropopause temperature/height over Indian stations and SST anomalies of east Pacific Ocean with SST  leading by one year.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Pei-Chi Ho ◽  
Gwo-Ching Gong ◽  
Vladimir Mukhanov ◽  
Zhi-Yu Zhu ◽  
An-Yi Tsai

Seasonal variations in the picophytoplankton community structure (Synechococcus spp. and picoeukaryotes) were studied by flow cytometry in the coastal ecosystem of the subtropical western Pacific from October 2019 to September 2020. Synechococcus spp. was dominant in abundance during the study period, with its density ranging from 0.05 to 5.6 × 104 cells mL−1; its maximum occurred in July 2020. Picoeukaryotes were less abundant, with their density ranging from 0.2 to 13.6 × 103 cells mL−1. Their highest abundance was recorded in January 2020. The growth rates of Synechococcus spp. and picoeukaryotes ranged from −0.39 to 1.42 d−1 and 0.38 to 2.46 d−1, respectively, throughout the study period. Overall, the growth rate of the picoeukaryotes was significantly higher than that of Synechococcus spp. It is interesting to note that the grazing mortality of Synechococcus spp. and picoeukaryotes during the warmer period (April to September) was relatively low. Based on this study, we suggest that mixotrophic nanoflagellates lowered their feeding activity that obtained nutrients from prey and instead used additional nutrients during the incubation experiments. Our study demonstrated that a shift in the picophytoplankton community composition and grazing activity of predacious nanoflagellates in cold and warm periods can impact on the seasonal dynamics of the microbial food web.


2022 ◽  
Author(s):  
Nicolas Compaire ◽  
Ludovic Margerin ◽  
Marc Monnereau ◽  
Raphael F. Garcia ◽  
Lange Lucas ◽  
...  

2022 ◽  
Author(s):  
Hitoshi Matsui ◽  
Tatsuhiro Mori ◽  
Sho Ohata ◽  
Nobuhiro Moteki ◽  
Naga Oshima ◽  
...  

Abstract. Black carbon (BC) particles in the Arctic contribute to rapid warming of the Arctic by heating the atmosphere and snow and ice surfaces. Understanding the source contributions to Arctic BC is therefore important, but they are not well understood, especially those for atmospheric and snow radiative effects. Here we estimate simultaneously the source contributions of Arctic BC to near-surface and vertically integrated atmospheric BC mass concentrations (MBC_SRF and MBC_COL), BC deposition flux (MBC_DEP), and BC radiative effects at the top of the atmosphere and snow surface (REBC_TOA and REBC_SNOW), and show that the source contributions to these five variables are highly different. In our estimates, Siberia makes the largest contribution to MBC_SRF, MBC_DEP, and REBC_SNOW in the Arctic (defined as > 70° N), accounting for 70 %, 53 %, and 43 %, respectively. In contrast, Asia’s contributions to MBC_COL and REBC_TOA are largest, accounting for 38 % and 45 %, respectively. In addition, the contributions of biomass burning sources are larger (24−34 %) to MBC_DEP, REBC_TOA, and REBC_SNOW, which are highest from late spring to summer, and smaller (4.2−14 %) to MBC_SRF and MBC_COL, whose concentrations are highest from winter to spring. These differences in source contributions to these five variables are due to seasonal variations in BC emission, transport, and removal processes and solar radiation, as well as to differences in radiative effect efficiency (radiative effect per unit BC mass) among sources. Radiative effect efficiency varies by a factor of up to 4 among sources (1465−5439 W g–1) depending on lifetimes, mixing states, and heights of BC and seasonal variations of emissions and solar radiation. As a result, source contributions to radiative effects and mass concentrations (i.e., REBC_TOA and MBC_COL, respectively) are substantially different. The results of this study demonstrate the importance of considering differences in the source contributions of Arctic BC among mass concentrations, deposition, and atmospheric and snow radiative effects for accurate understanding of Arctic BC and its climate impacts.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12705
Author(s):  
Guangjie Fang ◽  
Haolin Yu ◽  
Huaxiang Sheng ◽  
Chuanxi Chen ◽  
Yanli Tang ◽  
...  

Marine bacteria in the seawater and seafloor are essential parts of Earth’s biodiversity, as they are critical participants of the global energy flow and the material cycles. However, their spatial-temporal variations and potential interactions among varied biotopes in artificial habitat are poorly understood. In this study, we profiled the variations of bacterial communities among seasons and areas in the water and sediment of artificial reefs using 16S rRNA gene sequencing, and analyzed the potential interaction patterns among microorganisms. Distinct bacterial community structures in the two biotopes were exhibited. The Shannon diversity and the richness of phyla in the sediment were higher, while the differences among the four seasons were more evident in the water samples. The seasonal variations of bacterial communities in the water were more distinct, while significant variations among four areas were only observed in the sediment. Correlation analysis revealed that nitrite and mud content were the most important factors influencing the abundant OTUs in the water and sediment, respectively. Potential interactions and keystone species were identified based on the three co-occurrence networks. Results showed that the correlations among bacterial communities in the sediment were lower than in the water. Besides, the abundance of the top five abundant species and five keystone species had different changing patterns among four seasons and four areas. These results enriched our understanding of the microbial structures, dynamics, and interactions of microbial communities in artificial habitats, which could provide new insights into planning, constructing and managing these special habitats in the future.


MAUSAM ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 427-434
Author(s):  
PRABRA R. NAIR ◽  
K. KRISHNA MOORTHY

 Columnar aerosol spectral optical depth data, estimated using a ground based passive multi-wavelength solar radiometer at the tropical coastal station of Thumba, Thiruvananthapuram (Trivandrum) (8.55°N, 77°E) during the period November 1985 to May 1991, are examined to study the association of the seasonal variations in the optical depths and their association with the prevailing meteorological conditions. A systematic seasonal variation has been observed, with the optical depths maximising in the summer/pre-monsoon season and reaching a minimum in the winter season. Significant association has been observed between the seasonal variations of aerosol spectral optical depths with those of the (on-shore) surface wind speed and the rainfall. The implications of the findings are discussed.  


Sign in / Sign up

Export Citation Format

Share Document