yangtze river estuary
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 152)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yiquan Yuan ◽  
Xiuzhen Li ◽  
Zuolun Xie ◽  
Liming Xue ◽  
Bin Yang ◽  
...  

Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yuange Chen ◽  
Weilong Wang ◽  
Wei Zhou ◽  
Fen Hu ◽  
Meiqin Wu

The small yellow croaker, Larimichthys polyactis, is a keystone species in the Yellow Sea and the East China Sea, with significant impacts on the regional ecosystem, but has experienced decades of population decline as a result of environmental changes and overfishing. The settlement of post-larval L. polyactis is a period of high mortality, with impacts on population recruitment and survival. This study examines the feeding habits of 49 post-larval and early juvenile L. polyactis in the Yangtze River estuary, in order to reveal diet composition before and after the settlement period. DNA barcoding methods (MiSeq and TA cloning) were used to examine gastrointestinal contents in detail. Both methods revealed that dietary breadth increased with increasing body length, while the dominance of copepods in the diet decreased as the body length increased. Post-larva (body length < 17 mm in this study) primarily fed on copepods. At the beginning of settlement (body length between 17 and 19 mm), L. polyactis began to ingest larger organisms, such as fishes and mysids, along with copepods. Larger early juveniles (body length > 20 mm) demonstrated a much wider dietary breadth, implying that successful settlement had occurred. Diet species richness in the MiSeq group was significantly greater than species richness in the TA cloning group, making the trend more pronounced within the MiSeq group. This indicates that the MiSeq method was more efficient than TA cloning in this study. We recommend that future research to investigate the feeding habits of fish larvae should combine MiSeq and visual examination methods.


2021 ◽  
Vol 12 (1) ◽  
pp. 181
Author(s):  
Kuo Chen ◽  
Cuiping Kuang ◽  
Lei Wang ◽  
Ke Chen ◽  
Xuejian Han ◽  
...  

As an area frequently suffering from storm surge, the Yangtze River Estuary in the East China Sea requires fast and accurate prediction of water level for disaster prevention and mitigation. Due to storm surge process being affected by the long-term and short-term correlation of multiple factors, this study attempts to introduce a data-driven idea into the water level prediction during storm surge. By collecting the observed meteorological data and water level data of 12 typhoons from 1986 to 2016 at the Lusi tidal station of Jiangsu Province, China near the north branch of the Yangtze River Estuary, a Long Short-Term Memory (LSTM) neural network model was constructed by using multi-factor time series to predict the water level during the storm surge period. This study concludes that the LSTM model performs precisely for 1 h prediction of water level during the storm surge period and it can provide a 15 h prediction of water level within a limited error, and the prediction performance of the LSTM model is visibly superior to the four traditional ML models by 41% in terms of Accuracy Coefficient.


2021 ◽  
Vol 545 ◽  
pp. 151627
Author(s):  
Ying Dong ◽  
Haoran Zhang ◽  
Huixian Wu ◽  
Junzeng Xue ◽  
Yanan Liu ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Gao ◽  
Jiquan Chen ◽  
Tingting Zhang ◽  
Bin Zhao ◽  
Steven McNulty ◽  
...  

Abstract Background The lateral movements of mass and energy across the terrestrial-aquatic interface are being increasingly recognized for their importance in the carbon (C) balance of coastal/estuarine wetlands. We quantified the lateral flux of detrital C in the Yangtze estuary where invasive Spartina alterniflora has substantially and extensively altered the ecosystem structure and functions. Our overall objective was to close the C budget of estuarine wetlands through field sampling, tower-based measurements, and modeling. Methods A lateral detrital C exchange evaluation platform was established in a case study of the Yangtze River Estuary to investigate the effect of ecosystem structural changes on lateral detrital C transfer processes. This study estimated the lateral detrital C exchange based on the gross primary production (GPP) by performing coupled modeling and field sampling. Tower-based measurements and MODIS time series and CH4 outgassing and biomass simultaneously measured the lateral detrital C flux to characterize the relative contributions of lateral (i.e., detritus) C fluxes to the annual marsh C budget. Results The C pools in the plants and soil of Spartina marshes were significantly higher than those of the native community dominated by Phragmites australis. The GPP based on MODIS (GPPMODIS) was 472.6 g C m−2 year−1 and accounted for 73.0% of the GPP estimated from eddy covariance towers (GPPEC) (646.9 ± 70.7 g C m−2 year−1). We also detected a higher GPPMODIS during the pre-growing season, which exhibited a similar lateral detrital C flux magnitude. On average, 25.8% of the net primary production (NPP), which ranged from 0.21 to 0.30 kg C m−2 year−1, was exported during lateral exchange. The annual C loss as CH4 was estimated to be 17.9 ± 3.7 g C m−2 year−1, accounting for 2.8% of the GPPEC. The net positive detrital C flux (i.e., more detritus leaving the wetlands), which could exceed 0.16 kg C m−2 day−1, was related to daily tides. However, the observed lateral detrital C flux based on monthly sampling was 73.5% higher than that based on daily sampling (i.e., the sum of daily sampling), particularly in March and October. In addition, spatiotemporal granularities were responsible for most of the uncertainty in the lateral detrital C exchange. Conclusion This research demonstrated that an integrated framework incorporating modeling and field sampling can quantitatively assess lateral detrital C transport processes across the terrestrial-aquatic interface in estuarine wetlands. However, we note some limitations in the application of the light-use efficiency model to tidal wetlands. Spartina invasion can turn the lateral C balance from a C source (209.0 g C m−2 year−1) of Phragmites-dominated marshes into a small C sink (-31.0 g C m−2 year−1). Sampling over a more extended period and continuous measurements are essential for determining the contribution of different lateral detrital C flux processes to closing the ecosystem C budgets. The sampling spatiotemporal granularities can be key to assessing lateral detrital C transfer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxuan He ◽  
Sizhen Liu ◽  
Zhichen Jiang ◽  
Jinshui Zheng ◽  
Xuegang Li ◽  
...  

The nitrogen cycle is an indispensable part of the biogeochemical cycle, and the reactions that occur in the ocean oxygen minimum zone (OMZ) mediate much of the loss of nitrogen from oceans worldwide. Here, nitrate-utilizing bacteria were isolated from the water column at 17 stations within the OMZ of the Changjiang (Yangtze River) Estuary using selective media and a culture-dependent method. The microbial diversity, nitrogen metabolism and nitrate reduction test of culturable heterotrophic bacteria were examined. A total of 164 isolates were obtained; they were mostly affiliated with Proteobacteria (81.1%), Actinobacteria (5.5%), Bacteroidetes (12.3%), and Firmicutes (0.6%). Pseudomonas aeruginosa, Sphingobium naphthae, and Zunongwangia profunda were found at most stations. Among 24 tested representative strains, 8 were positive for nitrate reduction; they belonged to genera Aurantimonas, Halomonas, Marinobacter, Pseudomonas, Thalassospira, and Vibrio. Pseudomonas aeruginosa contained the genes (napAB, norBC, nirS, and nosZ) for complete denitrification and may be responsible for mediating denitrification. 66% representative isolates (16/24) contained genes for reducing nitrate to nitrite (nasA, napAB, or narGHI) and 79% representative isolates (19/24) possessed genes for converting nitrite to ammonia (nirA or nirBD), suggesting that nitrate and nitrite could act as electron acceptors to generate ammonium, subsequently being utilized as a reduced nitrogen source. This study improves our understanding of the microbial diversity within the OMZ of Changjiang Estuary and may facilitate the cultivation and exploitation of bacteria involved in the nitrogen cycle.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Yi ◽  
Linus Shing Him Lo ◽  
Hongbin Liu ◽  
Pei-Yuan Qian ◽  
Jinping Cheng

Estuarine sediments are increasingly contaminated by heavy metals as a result of urbanization and human activities. Continuous multi-heavy metal accumulation in the ecosystem can provoke new effects on top of the complex environmental interactions already present in estuarine ecosystems. It is important to study their integrated influence on imperative microbial communities to reflect on the environmental and ecological risks they may impose. Inductively coupled plasma optical emission spectroscopy analysis for five metals Cd, Cr, Cu, Pb, and Zn showed that Cr and Cu concentrations in intertidal sediments of the urbanized Yangtze River estuary in China have consistently exceeded respective threshold effect concentration (TEC) levels. The geo-accumulation and potential ecological risk index results of the five metals showed that all sampling sites were weakly to moderately polluted, and at considerable to high ecological risk, respectively. Redundancy and correlation analyses showed that Zn followed by Cr in the ecosystem were explanatory of the shifts in recorded microbial community structures. However, the spatial variation in metal concentrations did not correspond to the selection of metal resistance genes (MRGs). Unlike many other dominant bacterial taxa, most of the sulfate-reducing bacteria (SRB) and associated sulfate respiration as the dominant microbially contributed ecological function were found to negatively correlate with Zn and total heavy metal pollution. Zn concentration was proposed to be a potent indicator for heavy metal pollution-associated microbial community compositional shifts under urbanized estuarine conditions. The associations between heavy metals and estuarine microbial communities in this study demonstrate the influence of heavy metals on microbial community structure and adaptations that is often overshadowed by environmental factors (i.e., salinity and nutrients).


Sign in / Sign up

Export Citation Format

Share Document