Impacts of a wind stress and a buoyancy flux on the seasonal variation of mixing layer depth in the South China Sea

2013 ◽  
Vol 32 (9) ◽  
pp. 30-37 ◽  
Author(s):  
Xianjun Xiao ◽  
Dongxiao Wang ◽  
Wen Zhou ◽  
Zuqiang Zhang ◽  
Yinghao Qin ◽  
...  
2019 ◽  
Vol 32 (3) ◽  
pp. 685-700 ◽  
Author(s):  
Pengfei Tuo ◽  
Jin-Yi Yu ◽  
Jianyu Hu

This study finds that the correlation between El Niño–Southern Oscillation (ENSO) and the activity of mesoscale oceanic eddies in the South China Sea (SCS) changed around 2004. The mesoscale eddy number determined from satellite altimetry observations using a geometry of the velocity vector method was significantly and negatively correlated with the Niño-3.4 index before 2004, but the correlation weakened and became insignificant afterward. Further analyses reveal that the ENSO–eddy relation is controlled by two major wind stress forcing mechanisms: one directly related to ENSO and the other indirectly related to ENSO through its subtropical precursor—the Pacific meridional modes (PMMs). Both mechanisms induce wind stress curl variations over the SCS that link ENSO to SCS eddy activities. While the direct ENSO mechanism always induces a negative ENSO–eddy correlation through the Walker circulation, the indirect mechanism is dominated by the northern PMM (nPMM), resulting in a negative ENSO–eddy correlation before 2004, and by the southern PMM (sPMM) after 2004, resulting in a positive ENSO–eddy correlation. As a result, the direct and indirect mechanisms enhance each other to produce a significant ENSO–eddy relation before 2004, but they cancel each other out, resulting in a weak ENSO–eddy relation afterward. The relative strengths of the northern and southern PMMs are the key to determining the ENSO–eddy relation and may be related to a phase change of the interdecadal Pacific oscillation.


2017 ◽  
Vol 47 (11) ◽  
pp. 2793-2810 ◽  
Author(s):  
Zhongya Cai ◽  
Jianping Gan

AbstractA process-oriented numerical modeling study was conducted to investigate the formation and underlying forcing of an anticyclonic eddy train observed in the northern South China Sea. Observations showed that long-lived anticyclonic eddies formed an eddy train along an eastward separated jet across the northern South China Sea in summer. The eddy train plays a critical role in regulating ocean circulation in the region. Forced by the southwesterly monsoon and prevailing dipole wind stress curl in the summer, the northward coastal jet separates from the west boundary of the South China Sea basin and overshoots northeastward into the basin. The anticyclonic recirculation of the separated jet forms the first anticyclonic eddy in the eddy train. The jet meanders downstream with a strong negative shear vorticity that forms a second and a third anticyclonic eddy along the jet’s path. These three eddies form the eddy train. These eddies weaken gradually with depth from surface, but they can extend to approximately 500 m deep. The inherent stratification in the region regulates the three-dimensional scale of the anticyclonic eddies and constrains their intensity vertical extension by weakening the geostrophic balance within these eddies. Analyses of the vorticity balance indicate that the eddy train’s negative vorticity originates from the beta effect of northward western boundary current and from the subsequent downstream vorticity advection in the jet. The jet separation is a necessary condition for the formation of the eddy train, and the enhanced stratification, increased summer wind stress, and associated negative wind stress curl are favorable conditions for the formation of the anticyclonic eddies.


2002 ◽  
Vol 32 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Maochong Shi ◽  
Changsheng Chen ◽  
Qichun Xu ◽  
Huichan Lin ◽  
Guimei Liu ◽  
...  

2015 ◽  
Vol 65 (5) ◽  
pp. 721-734 ◽  
Author(s):  
Zhan Lian ◽  
Guohong Fang ◽  
Zexun Wei ◽  
Gang Wang ◽  
Baonan Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document