Analytical methods for the variable-coefficient KP equation and its wave solutions in weakly dispersive media

Author(s):  
Sheng Zhang ◽  
Dexin Zhang
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1003-1010
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Taher A. Nofal ◽  
Hanaa Abu-Zinadah ◽  
Münevver Tuz ◽  
...  

Abstract In this article, the Sinh–Gordon function method and sub-equation method are used to construct traveling wave solutions of modified equal width equation. Thanks to the proposed methods, trigonometric soliton, dark soliton, and complex hyperbolic solutions of the considered equation are obtained. Common aspects, differences, advantages, and disadvantages of both analytical methods are discussed. It has been shown that the traveling wave solutions produced by both analytical methods with different base equations have different properties. 2D, 3D, and contour graphics are offered for solutions obtained by choosing appropriate values of the parameters. To evaluate the feasibility and efficacy of these techniques, a nonlinear evolution equation was investigated, and with the help of symbolic calculation, these methods have been shown to be a powerful, reliable, and effective mathematical tool for the solution of nonlinear partial differential equations.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250126 ◽  
Author(s):  
FANG YAN ◽  
CUNCAI HUA ◽  
HAIHONG LIU ◽  
ZENGRONG LIU

By using the method of dynamical systems, this paper studies the exact traveling wave solutions and their bifurcations in the Gardner equation. Exact parametric representations of all wave solutions as well as the explicit analytic solutions are given. Moreover, several series of exact traveling wave solutions of the Gardner–KP equation are obtained via an auxiliary function method.


2019 ◽  
Vol 33 (10) ◽  
pp. 1850121 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Bo Han

In this work, a variable coefficient nonlinear Schrödinger (vc-NLS) equation is under investigation, which can describe the amplification or absorption of pulses propagating in an optical fiber with distributed dispersion and nonlinearity. By means of similarity reductions, a similar transformation helps us to relate certain class of solutions of the standard NLS equation to the solutions of integrable vc-NLS equation. Furthermore, we analytically consider nonautonomous breather wave, rogue wave solutions and their interactions in the vc-NLS equation, which possess complicated wave propagation in time and differ from the usual breather waves and rogue waves. Finally, the main characteristics of the rational solutions are graphically discussed. The parameters in the solutions can be used to control the shape, amplitude and scale of the rogue waves.


Sign in / Sign up

Export Citation Format

Share Document