scholarly journals Study on the applications of two analytical methods for the construction of traveling wave solutions of the modified equal width equation

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1003-1010
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Taher A. Nofal ◽  
Hanaa Abu-Zinadah ◽  
Münevver Tuz ◽  
...  

Abstract In this article, the Sinh–Gordon function method and sub-equation method are used to construct traveling wave solutions of modified equal width equation. Thanks to the proposed methods, trigonometric soliton, dark soliton, and complex hyperbolic solutions of the considered equation are obtained. Common aspects, differences, advantages, and disadvantages of both analytical methods are discussed. It has been shown that the traveling wave solutions produced by both analytical methods with different base equations have different properties. 2D, 3D, and contour graphics are offered for solutions obtained by choosing appropriate values of the parameters. To evaluate the feasibility and efficacy of these techniques, a nonlinear evolution equation was investigated, and with the help of symbolic calculation, these methods have been shown to be a powerful, reliable, and effective mathematical tool for the solution of nonlinear partial differential equations.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hatıra Günerhan

Nonlinear partial differential equations (NLPDEs) are an inevitable mathematical tool to explore a large variety of engineering and physical phenomena. Due to this importance, many mathematical approaches have been established to seek their traveling wave solutions. In this study, the researchers examine the Gardner equation via two well-known analytical approaches, namely, the improved tanΘϑ-expansion method and the wave ansatz method. We derive the exact bright, dark, singular, and W-shaped soliton solutions of the Gardner equation. One can see that the methods are relatively easy and efficient to use. To better understand the characteristics of the theoretical results, several numerical simulations are carried out.


2021 ◽  
Vol 10 (1) ◽  
pp. 385-394
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Kashif Ali Abro

Abstract There is no denying fact that harmonic crystals, cold plasma or liquids and compressible fluids are usually dependent of acoustic-gravity waves, acoustic waves, hydromagnetic waves, surface waves with long wavelength and few others. In this context, the exact solutions of the modified Camassa-Holm equation have been successfully constructed on the basis of comparative analysis of (G′ / G − 1 / G) and (1 / G′)-expansion methods. The (G′ / G − 1 / G) and (1 / G′)-expansion methods have been proved to be powerful and systematic tool for obtaining the analytical solutions of nonlinear partial differential equations so called modified Camassa-Holm equation. The solutions investigated via (G′ / G − 1 / G) and (1 / G′)-expansion methods have remarkably generated trigonometric, hyperbolic, complex hyperbolic and rational traveling wave solutions. For the sake of different traveling wave solutions, we depicted 3-dimensional, 2-dimensional and contour graphs subject to the specific values of the parameters involved in the governing equation. Two methods, which are important instruments in generating traveling wave solutions in mathematics, were compared both qualitatively and quantitatively. In addition, advantages and disadvantages of both methods are discussed and their advantages and disadvantages are revealed.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah ◽  
M. Ali Akbar

We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation by the -expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the -expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.


Author(s):  
G. N. Shaikhova ◽  
◽  
B. K. Rakhimzhanov ◽  

In this paper, we study an extended modified Korteweg-de Vries equation, which contains the relevant higher-order nonlinear terms and fifth-order dispersion. This equation is the extension of the modified Korteweg-de Vries equation and described by the Ablowitz-Kaup-Newell-Segur hierarchy. The standard Korteweg-de Vries equation is the pioneer integrable model in solitary waves theory, which gives rise to multiple soliton solutions. The Korteweg-de Vries equation arises naturally from shallow water, plasma physics, and other fields of science. To obtain exact solutions the sine-cosine method is applied. It is shown that the sine-cosine method provides a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics. Traveling wave solutions are determined for extended modified Korteweg-de Vries equation. The study shows that the sine–cosine method is quite efficient and practically well suited for use in calculating traveling wave solutions for extended modified Korteweg-de Vries equation.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah

The generalized Riccati equation mapping is extended with the basic(G′/G)-expansion method which is powerful and straightforward mathematical tool for solving nonlinear partial differential equations. In this paper, we construct twenty-seven traveling wave solutions for the (2+1)-dimensional modified Zakharov-Kuznetsov equation by applying this method. Further, the auxiliary equationG′(η)=w+uG(η)+vG2(η)is executed with arbitrary constant coefficients and called the generalized Riccati equation. The obtained solutions including solitons and periodic solutions are illustrated through the hyperbolic functions, the trigonometric functions, and the rational functions. In addition, it is worth declaring that one of our solutions is identical for special case with already established result which verifies our other solutions. Moreover, some of obtained solutions are depicted in the figures with the aid of Maple.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1093-1099
Author(s):  
Mustafa Inc ◽  
Samia Zaki Hassan ◽  
Mahmoud Abdelrahman ◽  
Reem Abdalaziz Alomair ◽  
Yu-Ming Chu

Abstract In this article, the system for the long–short-wave interaction (LS) system is considered. In order to construct some new traveling wave solutions, He’s semi-inverse method is implemented. These solutions may be applicable for some physical environments, such as physics and fluid mechanics. These new solutions show that the proposed method is easy to apply and the proposed technique is a very powerful tool to solve many other nonlinear partial differential equations in applied science.


2021 ◽  
pp. 2150417
Author(s):  
Kalim U. Tariq ◽  
Mostafa M. A. Khater ◽  
Muhammad Younis

In this paper, some new traveling wave solutions to the conformable time-fractional Wu–Zhang system are constructed with the help of the extended Fan sub-equation method. The conformable fractional derivative is employed to transform the fractional form of the system into ordinary differential system with an integer order. Some distinct types of figures are sketched to illustrate the physical behavior of the obtained solutions. The power and effective of the used method is shown and its ability for applying different forms of nonlinear evolution equations is also verified.


Sign in / Sign up

Export Citation Format

Share Document