scholarly journals Polynomial surrogates for Bayesian traveltime tomography

Author(s):  
Pierre Sochala ◽  
Alexandrine Gesret ◽  
Olivier Le Maître
2008 ◽  
Vol 1 (1) ◽  
pp. 83-93 ◽  
Author(s):  
M. B. GALATI ◽  
T. QUARTA ◽  
L. NUZZO ◽  
M. FEDI ◽  
B. GAROFALO

2014 ◽  
Vol 15 (2) ◽  
pp. 434-452 ◽  
Author(s):  
Ayda Shokoohi Razi ◽  
Vadim Levin ◽  
Steven W. Roecker ◽  
Guo-chin Dino Huang

2011 ◽  
Vol 12 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kori R. Newman ◽  
Mladen R. Nedimović ◽  
J. Pablo Canales ◽  
Suzanne M. Carbotte

2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 354-364 ◽  
Author(s):  
Larry Lines ◽  
Henry Tan ◽  
Sven Treitel ◽  
John Beck ◽  
Richard Chambers ◽  
...  

In 1992, there was a collaborative effort in reservoir geophysics involving Amoco, Conoco, Schlumberger, and Stanford University in an attempt to delineate variations in reservoir properties of the Grayburg unit in a West Texas [Formula: see text] pilot at North Cowden Field. Our objective was to go beyond traveltime tomography in characterizing reservoir heterogeneity and flow anisotropy. This effort involved a comprehensive set of measurements to do traveltime tomography, to image reflectors, to analyze channel waves for reservoir continuity, to study shear‐wave splitting for borehole stress‐pattern estimation, and to do seismic anisotropy analysis. All these studies were combined with 3-D surface seismic data and with sonic log interpretation. The results are to be validated in the future with cores and engineering data by history matching of primary, water, and [Formula: see text] injection performance. The implementation of these procedures should provide critical information on reservoir heterogeneities and preferential flow direction. Geophysical methods generally indicated a continuous reservoir zone between wells.


Sign in / Sign up

Export Citation Format

Share Document