wave inversion
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 173)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Stephanie M. van der Voorn ◽  
Mimount Bourfiss ◽  
Anneline S. J. M. te Riele ◽  
Karim Taha ◽  
Marc A. Vos ◽  
...  

Background: Pathogenic variants in phospholamban (PLN, like p. Arg14del), are found in patients diagnosed with arrhythmogenic (ACM) and dilated cardiomyopathy (DCM). Fibrosis formation in the heart is one of the hallmarks in PLN p.Arg14del carriers. During collagen synthesis and breakdown, propeptides are released into the circulation, such as procollagen type I carboxy-terminal propeptide (PICP) and C-terminal telopeptide collagen type I (ICTP).Aim: To investigate if PICP/ICTP levels in blood are correlative biomarkers for clinical disease severity and outcome in PLN p.Arg14del variant carriers.Methods: Serum and EDTA blood samples were collected from 72 PLN p.Arg14del carriers (age 50.5 years, 63% female) diagnosed with ACM (n = 12), DCM (n = 14), and preclinical variant carriers (n = 46). PICP levels were measured with an enzyme-linked immune sorbent assay and ICTP with a radio immuno-assay. Increased PICP/ICTP ratios suggest a higher collagen deposition. Clinical data including electrocardiographic, and imaging results were adjudicated from medical records.Results: No correlation between PICP/ICTP ratios and late gadolinium enhancement (LGE) was found. Moderate correlations were found between the PICP/ICTP ratio and end-diastolic/systolic volume (both rs = 0.40, n = 23, p = 0.06). PICP/ICTP ratio was significantly higher in patients with T wave inversion (TWI), especially in leads V4–V6, II, III, and aVF (p < 0.022) and in patients with premature ventricular contractions (PVCs) during an exercise tolerance test (p = 0.007).Conclusion: High PICP/ICTP ratios correlated with clinical parameters, such as TWI and PVCs. Given the limited size and heterogeneity of the patient group, additional studies are required to substantiate the incremental prognostic value of these fibrosis biomarkers in PLN p.Arg14del patients.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Mohammad Reza Hatamnejad ◽  
Amir Arsalan Heydari ◽  
Maryam Salimi ◽  
Soodeh Jahangiri ◽  
Mehdi Bazrafshan ◽  
...  

Abstract Background SYNTAX score is one of the risk assessment systems to predict cardiac events in acute coronary syndrome patients. Despite the large number of SYNTAX score benefits, invasive methods such as coronary angiography are necessary to perform the scoring. We hypothesized that ECG parameters could predict the SYNTAX score in unstable angina patients. Methods During the retrospective cohort study, a total number of 876 patients were diagnosed with unstable angina. After applying the exclusion criteria, 600 patients were divided into tertiles based on the SYNTAX scores as low (0–22), intermediate (23–32), and high (≥ 33). The association between ECG parameters and SYNTAX score was investigated. Results The study included 65% men and 35% women with a mean age of 62.4 ± 9.97 years. The delayed transition zone of QRS complex, ST-depression in inferior-lateral territories or/and in all three territories, and T-wave inversion in lateral territory were significant (p < 0.05) independent predictors of intermediate SYNTAX score. High SYNTAX score was predicted by the presence of prolonged P wave duration, ST-depression in lateral territory or/and anterior-lateral territories, ST-elevation in aVR–III leads or/and aVR–III–V1 leads. Among those, all three territories ST-depression (AUC: 0.611, sensitivity: 75%, specificity: 51%) and aVR + III ST-elevation (AUC: 0.672, sensitivity: 50.12%, specificity: 80.50%) were the most accurate parameters to predict intermediate and high SYNTAX scores, respectively. Conclusion The present study demonstrates that accompanying the STE in the right side leads (aVR, III, V1) with ST-depression in other leads indicates the patients with high SYNTAX score; meanwhile, diffuse ST-depression without ST-elevation is a marker for intermediate SYNTAX score in unstable angina patients and can be applied for early risk stratification and intervention.


Geophysics ◽  
2022 ◽  
pp. 1-59
Author(s):  
Fucai Dai ◽  
Feng Zhang ◽  
Xiangyang Li

SS-waves (SV-SV waves and SH-SH waves) are capable of inverting S-wave velocity ( VS) and density ( ρ) because they are sensitive to both parameters. SH-SH waves can be separated from multicomponent data sets more effectively than the SV-SV wave because the former is decoupled from the PP-wave in isotropic media. In addition, the SH-SH wave can be better modeled than the SV-SV wave in the case of strong velocity/impedance contrast because the SV-SV wave has multicritical angles, some of which can be quite small when velocity/ impedance contrast is strong. We derived an approximate equation of the SH-SH wave reflection coefficient as a function of VS and ρ in natural logarithm variables. The approximation has high accuracy, and it enables the inversion of VS and ρ in a direct manner. Both coefficients corresponding to VS and ρ are “model-parameter independent” and thus there is no need for prior estimate of any model parameter in inversion. Then, we developed an SH-SH wave inversion method, and demonstrated it by using synthetic data sets and a real SH-SH wave prestack data set from the west of China. We found that VS and ρ can be reliably estimated from the SH-SH wave of small angles.


Author(s):  
Peng Zuo ◽  
Peter Huthwaite

Quantitative guided wave thickness mapping in plate-like structures and pipelines is of significant importance for the petrochemical industry to accurately estimate the minimum remaining wall thickness in the presence of corrosion, as guided waves can inspect a large area without needing direct access. Although a number of inverse algorithms have been studied and implemented in guided wave reconstruction, a primary assumption is widely used: the three-dimensional guided wave inversion of thickness is simplified as a two-dimensional acoustic wave inversion of velocity, with the dispersive nature of the waves linking thickness to velocity. This assumption considerably simplifies the inversion procedure; however, it makes it impossible to account for mode conversion. In reality, mode conversion is quite common in guided wave scattering with asymmetric wall loss, and compared with non-converted guided wave modes, converted modes may provide greater access to valuable information about the thickness variation, which, if exploited, could lead to improved performance. Geometrical full waveform inversion (GFWI) is an ideal tool for this, since it can account for mode conversion. In this paper, quantitative thickness reconstruction based on GFWI is developed in a plate cross-section and applied to study the performance of thickness reconstruction using mode conversion.


2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


Author(s):  
Ksenia A. Sedova ◽  
Marina M. Demidova ◽  
Jan E. Azarov ◽  
Jan Hejda ◽  
Jonas Carlson ◽  
...  
Keyword(s):  
T Wave ◽  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ahmed Ferhan Y ◽  
Tsingas Constantinos ◽  
Almubarak Mohammed S

2021 ◽  
Vol 12 (1) ◽  
pp. 170
Author(s):  
Huey-Chu Huang ◽  
Tien-Han Shih ◽  
Cheng-Ta Hsu ◽  
Cheng-Feng Wu

Near-surface S-wave velocity structures (VS) are crucial in site-effect studies and ground-motion simulations or predictions. We explored S-wave velocity structures in Taichung, the second-largest city in Taiwan by population, by employing array measurements of microtremors at a total of 53 sites. First, the fundamental-mode dispersion curves of Rayleigh waves were estimated by adopting the frequency–wavenumber analysis method. Second, the surface-wave inversion technique was used to calculate the S-wave velocity structures of the area. At many sites, observed phase velocities were almost flat, with a phase velocity of approximately 800–1300 m/s in the frequency range of 0.6–2 Hz. A high-velocity zone (VS of 900–1500 m/s) with a convex shape was observed at the shallow S-wave structures of these sites (depths of 50–500 m). On the basis of the inversion results, we constructed two-dimensional and three-dimensional contour maps to elucidate the variations of VS structures in Taichung. According to VS-contour maps at different depths, lowest S-wave velocities are found at the western coastal plain, whereas highest S-wave velocities appear on the eastern side. The S-wave velocity gradually decreases from east to west. Moreover, the S-wave velocity of the Tertiary bedrock is assumed to be 1500 m/s in the area. According to the depth-contour map (VS = 1500 m/s), the depths of the bedrock range from 250 m (the eastern part) to 1550 m (the western part). The thicknesses of the alluvium gradually decrease from west to east. Our results are consistent with the geology of the Taichung area.


2021 ◽  
Vol 154 (2) ◽  
Author(s):  
Bastiaan J.D. Boukens ◽  
William Joyce ◽  
Ditte Lind Kristensen ◽  
Ingeborg Hooijkaas ◽  
Aldo Jongejan ◽  
...  

Ectothermic vertebrates experience daily changes in body temperature, and anecdotal observations suggest these changes affect ventricular repolarization such that the T-wave in the ECG changes polarity. Mammals, in contrast, can maintain stable body temperatures, and their ventricular repolarization is strongly modulated by changes in heart rate and by sympathetic nervous system activity. The aim of this study was to assess the role of body temperature, heart rate, and circulating catecholamines on local repolarization gradients in the ectothermic ball python (Python regius). We recorded body-surface electrocardiograms and performed open-chest high-resolution epicardial mapping while increasing body temperature in five pythons, in all of which there was a change in T-wave polarity. However, the vector of repolarization differed between individuals, and only a subset of leads revealed T-wave polarity change. RNA sequencing revealed regional differences related to adrenergic signaling. In one denervated and Ringer’s solution–perfused heart, heating and elevated heart rates did not induce change in T-wave polarity, whereas noradrenaline did. Accordingly, electrocardiograms in eight awake pythons receiving intra-arterial infusion of the β-adrenergic receptor agonists adrenaline and isoproterenol revealed T-wave inversion in most individuals. Conversely, blocking the β-adrenergic receptors using propranolol prevented T-wave change during heating. Our findings indicate that changes in ventricular repolarization in ball pythons are caused by increased tone of the sympathetic nervous system, not by changes in temperature. Therefore, ventricular repolarization in both pythons and mammals is modulated by evolutionary conserved mechanisms involving catecholaminergic stimulation.


Sign in / Sign up

Export Citation Format

Share Document