priori information
Recently Published Documents


TOTAL DOCUMENTS

1099
(FIVE YEARS 248)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 18 (1) ◽  
pp. e1009702
Author(s):  
Ulrike Münzner ◽  
Tomoya Mori ◽  
Marcus Krantz ◽  
Edda Klipp ◽  
Tatsuya Akutsu

Boolean networks (BNs) have been developed to describe various biological processes, which requires analysis of attractors, the long-term stable states. While many methods have been proposed to detection and enumeration of attractors, there are no methods which have been demonstrated to be theoretically better than the naive method and be practically used for large biological BNs. Here, we present a novel method to calculate attractors based on a priori information, which works much and verifiably faster than the naive method. We apply the method to two BNs which differ in size, modeling formalism, and biological scope. Despite these differences, the method presented here provides a powerful tool for the analysis of both networks. First, our analysis of a BN studying the effect of the microenvironment during angiogenesis shows that the previously defined microenvironments inducing the specialized phalanx behavior in endothelial cells (ECs) additionally induce stalk behavior. We obtain this result from an extended network version which was previously not analyzed. Second, we were able to heuristically detect attractors in a cell cycle control network formalized as a bipartite Boolean model (bBM) with 3158 nodes. These attractors are directly interpretable in terms of genotype-to-phenotype relationships, allowing network validation equivalent to an in silico mutagenesis screen. Our approach contributes to the development of scalable analysis methods required for whole-cell modeling efforts.


2022 ◽  
Author(s):  
Valentina Pavlova ◽  
Irina Saenkova ◽  
Yulia Shokina ◽  
Grigoriy Shokin

In this article, the results of the development of the functional fish culinary product “Thorny Skate and Cod Pie” are presented. A traditional recipe was used for making the yeast dough for the pie. The pie filling recipe was designed using Fuzzy Logic in the Matlab software package.Optimized parametersfor the selected sensory evaluation of the pie were calculated. On the basis of a priori information, key components of the filling (including the fraction of the fish components and skate meat) were chosen as the factors of interest. According to the simulation results, the optimal values werea 50/50 percentage for the first and the second factor respectively, and this providedthe maximum organoleptic assessment (five points on a five-point scale). The simulation results were compared with the results of the organoleptic evaluation of the pie made according to the optimized recipe, and their sufficient convergence was shown. The indicators of mass fraction of amine nitrogen and nitrogen of volatile bases was studied, as well as the microbiological safety indicators of flour fish culinary products, in accordance with the requirements of the Technical Regulations of the Eurasian Economic Union 040/2016 ”On the safety of fish products”. The results showed a high efficiency of the shock freezing of the semi-finished product, brought to semi-readiness, for long-term storage (120 days at a temperature no higher than minus 18 ∘C), without reducing the quality or safety of the pie. The product had a cholesterol content from 220 to 260 mg%, which allowed it to be classified as functional. The nutritional values of the product (mass fraction of protein, fat, carbohydrates, and amino acid composition) are presented. Keywords: thornyskate, functional product, pie with thornyskate and cod, shock freezing


2022 ◽  
pp. 910-929
Author(s):  
Johannes Maria Kraus ◽  
Yannick Forster ◽  
Sebastian Hergeth ◽  
Martin Baumann

Trust calibration takes place prior to and during system interaction along the available information. In an online study N = 519 participants were introduced to a conditionally automated driving (CAD) system and received different a priori information about the automation's reliability (low vs high) and brand of the CAD system (below average vs average vs above average reputation). Trust was measured three times during the study. Additionally, need for cognition (NFC) and other personality traits were assessed. Both heuristic brand information and reliability information influenced trust in automation. In line with the Elaboration Likelihood Model (ELM), participants with high NFC relied on the reliability information more than those with lower NFC. In terms of personality traits, materialism, the regulatory focus and the perfect automation scheme predicted trust in automation. These findings show that a priori information can influence a driver's trust in CAD and that such information is interpreted individually.


2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 21-27
Author(s):  
Sergii Nazarenko ◽  
Galina Kushnareva ◽  
Natalia Maslich ◽  
Ludmila Knaub ◽  
Nataliia Naumenko ◽  
...  

Experimental studies are presented and the dependence of the change in the strength of the material of a pressure head fire hose of type T with an inner diameter of 77 mm in the longitudinal direction is established, taking into account single damages. The work describes the plan of the experiment and carried out a number of field experiments to determine the effect of the length ld and the depth K damage on the strength F of the hose material, that is, obtaining the dependence F=f (ld, K). A mathematical method of experiment planning was used and a plan was drawn up for a complete multivariate experiment of type 2k with an acceptable model accuracy of 5 %. The limits of variation of the factors are set taking into account a priori information, experimental capabilities and on the basis of the results of preliminary search experiments. The dependence in the coded and natural values of the factors is obtained. The reliability of the relationship was checked using the Fisher test, the calculated value of which was 5.98, which confirms the adequacy of the described process with a probability of 95 %. Analyzing experimental studies of the dependence of the change in the strength of the hose material on the length and depth of damage, it can be said that the change in the strength of the hose almost linearly depends on the specified damage parameters. It is found that with increasing damage, the strength of the hose material significantly decreases. When varying the length factor and the greatest depth of damage, K=0.4 mm, the strength of the hose material decreases from 11.67 kN to 8.77 kN, and in percentage terms by 25 %. The results obtained can be used in practical units of emergency rescue teams, when diagnosing hidden damage in pressure head fire hoses in order to prevent their failure in case of fires


2021 ◽  
Author(s):  
Yuchen Yue ◽  
Hua Li ◽  
Jianhua Luo

Establishing structured reconstruction models and efficient reconstruction algorithms according to practical engineering needs is of great concern in the applied research of Compressed Sensing (CS) theory. Targeting problems during high-speed video capture, the paper proposes a set of video CS scheme based on intra-frame and inter-frame constraints and Genetic Algorithm (GA). Firstly, it employs the intra-frame and inter-frame correlation of the video signals as the priori information, creating a video CS reconstruction model on the basis of temporal and spatial similarity constraints. Then it utilizes overcomplete dictionary of Ridgelet to divide the video frames into three structures, smooth, single-oriented, or multijointed. Video frames cluster according to the structure using Affinity Propagation (AP) algorithm, and finally clusters are reconstructed using evolutionary algorithm. It is proved efficient in terms of reconstruction result in the experiment.


2021 ◽  
Author(s):  
Kleanthis Simyrdanis ◽  
Nikos Papadopoulos ◽  
Jung-Ho Kim ◽  
Panagiotis Tsourlos ◽  
Ian Moffat

This work explores the applicability and effectiveness of electrical resistivity tomography in mapping archaeological relics in the shallow marine environment. The approach consists of a methodology based on numerical simulation models validated with comparison to field data. Numerical modelling includes the testing of different electrode arrays suitable for multi-channel resistivity instruments (dipole–dipole, pole–dipole, and gradient). The electrodes are placed at fixed positions either floating on the sea surface or submerged at the bottom of the sea. Additional tests are made concerning the resolving capabilities of electrical resistivity tomography with various seawater depths and target characteristics (dimensions and burial depth of the targets). Although valid a priori information, in terms of water resistivity and thickness, can be useful for constraining the inversion, it should be used judiciously to prevent erroneous information leading to misleading results. Finally, an application of the method at a field site is presented not only for verifying the theoretical results but also at the same time for proposing techniques to overcome problems that can occur due to the special environment. Numerical and field electrical resistivity tomography results indicated the utility of the method in reconstructing off-shore cultural features, demonstrating at the same time its applicability to be integrated in wider archaeological projects.


Author(s):  
Ирина Николаевна Коротких ◽  
Михаил Вадимович Фролов ◽  
Марина Давидовна Михайлова ◽  
Ольга Леонидовна Бельских ◽  
Надежда Александровна Старокожева

В статье рассматривается ряд методов интеллектуальной поддержки принятия решений в диагностике и лечении гинекологических заболеваний. При применении высоких медицинских технологий возрастает роль лечащего врача (ЛВ), который по-прежнему остается лицом, принимающим решение (ЛПР). Однако применение этих методов принятия решений должно увязываться с логикой деятельности ЛВ, быть доступно для практического использования, освобождать ЛВ от "рутинной" работы и способствовать целенаправленному и эффективному лечебно-диагностическому процессу. Процессы диагностики и лечения гинекологических заболеваний характеризуются большим числом переменных и определяются индивидуальными характеристиками пациенток, рядом неопределенности при выборе тактики лечения. Процедура математического описания процессов лечения состоит из выбора метода моделирования в условиях неоднородностей. Выбор тактики лечения сводится к поиску эффективных алгоритмов, индивидуализирующих особенности каждой больной в процессе лечения, и позволяет врачу на основе опыта и интуиции принимать адекватные решения в любой момент времени. Вот почему, прежде всего, при выборе рациональных реабилитационных мероприятий в условиях неполной априорной информации требуется интеллектуальная поддержка принимаемых решений ЛВ. Для интеллектуальной поддержки принимаемых решений применяются методы имитационного эксперимента, основанные на априорной информации лечащего врача и эксперта для организации и алгоритмизации диалогового режима в ускоренном и реальном масштабе времени. Рассматривается алгоритмическая процедура процессов лечения The article discusses a number of methods of intellectual support for decision-making in the diagnosis and treatment of gynecological diseases. With the use of high medical technologies, the role of the attending physician (PD) increases, who still remains a decision-maker (DM). However, the application of these decision-making methods should be linked to the logic of the drug's activity, be available for practical use, free the drug from "routine" work and contribute to a purposeful and effective treatment and diagnostic process. The processes of diagnosis and treatment of gynecological diseases are characterized by a large number of variables and are determined by the individual characteristics of patients, a number of uncertainties in the choice of treatment tactics. The procedure for the mathematical description of treatment processes consists of the choice of a modeling method under conditions of inhomogeneities. The choice of treatment tactics is reduced to the search for effective algorithms that individualize the characteristics of each patient in the treatment process, and allows the doctor, based on experience and intuition, to make adequate decisions at any time. That is why, first of all, when choosing rational rehabilitation measures in conditions of incomplete a priori information, intellectual support for the decisions made by the dispensary is required. For the intellectual support of the decisions made, the methods of the simulation experiment are used, based on the a priori information of the attending physician and the expert for the organization and algorithmization of the dialogue mode in accelerated and real time. An algorithmic procedure for treatment processes is considered


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 6) ◽  
Author(s):  
Arkoprovo Biswas ◽  
Khushwant Rao

Abstract Identification of intraterrane dislocation zones and associated mineralized bodies is of immense importance in exploration geophysics. Understanding such structures from geophysical anomalies is challenging and cumbersome. In the present study, we present a fast and competent algorithm for interpreting magnetic anomalies from such dislocation and mineralized zones. Such dislocation and mineralized zones are well explained from 2D fault and sheet-type structures. The different parameters from 2D fault and sheet-type structures such as the intensity of magnetization (k), depth to the top (z1), depth to the bottom (z2), origin location (x0), and dip angle (θ) of the fault and sheet from magnetic anomalies are interpreted. The interpretation suggests that there is uncertainty in defining the model parameters z1 and z2 for the 2D inclined fault; k, z1, and z2 for the 2D vertical fault and finite sheet-type structure; and k and z for the infinite sheet-type structure. Here, it shows a wide range of solutions depicting an equivalent model with smaller misfits. However, the final interpreted mean model is close to the actual model with the least uncertainty. Histograms and crossplots for 2D fault and sheet-type structures also reveal the same. The present algorithm is demonstrated with four theoretical models, including the effect of noises. Furthermore, the investigation of magnetic data was also applied from three field examples from intraterrane dislocation zones (Australia), deep-seated dislocation zones (India) as a 2D fault plane, and mineralized zones (Canada) as sheet-type structures. The final estimated model parameters are in good agreement with the earlier methods applied for these field examples with a priori information wherever available in the literature. However, the present method can simultaneously interpret all model parameters without a priori information.


2021 ◽  
Vol 3 (1) ◽  
pp. 8
Author(s):  
Bruno Arderucio Costa ◽  
Pedro Pessoa

Motivated by applications of statistical mechanics in which the system of interest is spatially unconfined, we present an exact solution to the maximum entropy problem for assigning a stationary probability distribution on the phase space of an unconfined ideal gas in an anti-de Sitter background. Notwithstanding the gas’ freedom to move in an infinite volume, we establish necessary conditions for the stationary probability distribution solving a general maximum entropy problem to be normalizable and obtain the resulting probability for a particular choice of constraints. As a part of our analysis, we develop a novel method for identifying dynamical constraints based on local measurements. With no appeal to a priori information about globally defined conserved quantities, it is therefore applicable to a much wider range of problems.


2021 ◽  
Vol 27 (12) ◽  
pp. 658-667
Author(s):  
A. V. Medvedev ◽  
◽  
D. I. Yareshchenko ◽  

Problems of identification and control of multidimensional discrete-continuous processes with delay in conditions of incomplete information about the object are considered. In such conditions, the form of parametric equations for various channels of the object is absent due to the lack of a priori information. Moreover, multidimensional processes have stochastic dependences of the components of the vector of output variables. Under such conditions, the mathematical description of such processes leads to a system of implicit equations. Nonparametric identification and control algorithms for multidimensional systems are proposed. The main task of modeling such processes is to determine the predicted values of the output variables from the known input. Moreover, for implicit equations, it is only known that one or another output variable can depend on other input and output variables that determine the state of a multidimensional system. In this study, a nontrivial situation arises when solving a system of implicit equations under conditions when the dependences between the components of the output variables are unknown. The application of the parametric theory of identification in this case will not lead to success. One of the possible directions is the use of the theory of nonparametric systems. The main content of the work is the solution of the identification problem in the presence of dependencies of the output variables and then the solution of the control problem for such a process. Here you should pay attention to the fact that when determining the reference actions for a multidimensional system, it is first necessary to solve the system of reference actions, since it is not possible to choose arbitrarily setting influences from the range of definition of output variables. Computational eXperiments aimed at investigating the effectiveness of the proposed identification and control algorithms are presented.


Sign in / Sign up

Export Citation Format

Share Document