elastic inversion
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Author(s):  
E. Gofer ◽  
S. Dasgupta ◽  
R. Bachrach ◽  
N. Morrison ◽  
K. Nunn ◽  
...  

2022 ◽  
Author(s):  
J. Zhou ◽  
A. Mannini ◽  
J. Cocker
Keyword(s):  

2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Rustem Valiakhmetov ◽  
Francesco Gerecitano ◽  
Viktor Maliar ◽  
Grigori Kashuba ◽  
...  

Abstract The seismic data have historically been utilized to perform structural interpretation of the geological subsurface. Modern approaches of Quantitative Interpretation are intended to extract geologically valuable information from the seismic data. This work demonstrates how rock physics enables optimal prediction of reservoir properties from seismic derived attributes. Using a seismic-driven approach with incorporated prior geological knowledge into a probabilistic subsurface model allowed capturing uncertainty and quantifying the risk for targeting new wells in the unexplored areas. Elastic properties estimated from the acquired seismic data are influenced by the depositional environment, fluid content, and local geological trends. By applying the rock physics model, we were able to predict the elastic properties of a potential lithology away from the well control points in the subsurface whether or not it has been penetrated. Seismic amplitude variation with incident angle (AVO) and azimuth (AVAZ) jointly with rock-derived petrophysical interpretations were used for stochastical modeling to capture the reservoir distribution over the deep Visean formation. The seismic inversion was calibrated by available well log data and by traditional structural interpretation. Seismic elastic inversion results in a deep Lower Carboniferous target in the central part of the DDB are described. The fluid has minimal effect on the density and Vp. Well logs with cross-dipole acoustics are used together with wide-azimuth seismic data, processed with amplitude control. It is determined that seismic anisotropy increases in carbonate deposits. The result covers a set of lithoclasses and related probabilities: clay minerals, tight sandstones, porous sandstones, and carbonates. We analyzed the influence of maximum angles determination for elastic inversion that varied from 32.5 to 38.5 degrees. The greatest influence of the far angles selection is on the density. AI does not change significantly. Probably the 38,5 degrees provides a superior response above the carbonates. It does not seem to damage the overall AVA behavior, which result in a good density outcome, as higher angles of incidence are included. It gives a better tie to the wells for the high density layers over the interval of interest. Sand probability cube must always considered in the interpretation of the lithological classification that in many cases may be misleading (i.e. when sand and shale probabilities are very close to each other, because of small changes in elastic parameters). The authors provide an integrated holistic approach for quantitative interpretation, subsurface modeling, uncertainty evaluation, and characterization of reservoir distribution using pre-existing well logs and recently acquired seismic data. This paper underpins the previous efforts and encourages the work yet to be fulfilled on this subject. We will describe how quantitative interpretation was used for describing the reservoir, highlight values and uncertainties, and point a way forward for further improvement of the process for effective subsurface modeling.


2021 ◽  
pp. 1-57
Author(s):  
David Connolly ◽  
Kristoffer Rimaila ◽  
Assia Lakhlifi ◽  
Gabor Kocsis ◽  
Ingrid Fæstø ◽  
...  

Norway’s Ringhorne Field is a faulted anticline which produces oil from Triassic (Statfjord) and Paleocene (Hermod) sands. It is located on the Utsira High. Geochemical studies of the produced oil indicate the oil is generated from mature Upper Jurassic marine shales in the adjacent Viking Graben. However, it has not been clear how oil migrated into the Triassic reservoirs and charged the overlying Paleocene reservoirs. Gas chimney detection using a proven neural network technique was used to detect the vertical hydrocarbon migration pathways on normally processed seismic data. The processing results were then validated using a set of criteria to determine if they represented true hydrocarbon migration rather than seismic artifacts. The chimney processing results using this traditional (shallow) neural network was compared with convolutional neural network (deep learning) results and geo-mechanical modeling on key lines. Key reservoirs were delineated using a stochastic (elastic) inversion approach. Reliable chimneys were then visualized in the vicinity of the producing reservoirs. The results showed pathways by which the Triassic fluvial sands received charge, and how these reservoirs had flank leakage to provide charge to shallower Paleocene reservoirs. This approach has now been used over hundreds of fields and dry holes in the Norwegian North Sea and worldwide as analogs to assess hydrocarbon charge and top seal risk predrill.


2021 ◽  
Author(s):  
T. Blanchard ◽  
M. Henriquel ◽  
J. Granel ◽  
A. Cherrett ◽  
A. Adeyemi
Keyword(s):  

Author(s):  
Amir Abbas Babasafari ◽  
Shiba Rezaei ◽  
Ahmed Mohamed Ahmed Salim ◽  
Sayed Hesammoddin Kazemeini ◽  
Deva Prasad Ghosh

Abstract For estimation of petrophysical properties in industry, we are looking for a methodology which results in more accurate outcome and also can be validated by means of some quality control steps. To achieve that, an application of petrophysical seismic inversion for reservoir properties estimation is proposed. The main objective of this approach is to reduce uncertainty in reservoir characterization by incorporating well log and seismic data in an optimal manner. We use nonlinear optimization algorithms in the inversion workflow to estimate reservoir properties away from the wells. The method is applied at well location by fitting nonlinear experimental relations on the petroelastic cross-plot, e.g., porosity versus acoustic impedance for each lithofacies class separately. Once a significant match between the measured and the predicted reservoir property is attained in the inversion workflow, the petrophysical seismic inversion based on lithofacies classification is applied to the inverted elastic property, i.e., acoustic impedance or Vp/Vs ratio derived from seismic elastic inversion to predict the reservoir properties between the wells. Comparison with the neural network method demonstrated this application of petrophysical seismic inversion to be competitive and reliable.


Sign in / Sign up

Export Citation Format

Share Document