scholarly journals Analysis and modeling of supply chain management of fresh products based on genetic algorithm

Author(s):  
Yaoting Chen ◽  
Huanting Chen
Author(s):  
Rodion Sergeevich Rogulin ◽  
◽  
Lev Solomonovich Mazelis ◽  

Supply chain management is a burning issue for modern industrial enterprises. To handle this issue, non-linear stochastic models are successfully applied to find the reasonable and efficient solutions. A need to develop a unique method to find the solutions to supply chain management tasks defined as stochastic mixed-integer non-linear programming tasks is determined by the limitations imposed by the general models. The sum of the total raw procurement costs from the Commodity Exchange over the defined planning horizon is taken to be the target function of the unique model, while the binary variables which show whether a purchasing order is included into the procurement plan are used for optimization purposes. Some parameters of model’s limitations are stochastic and consider the uncertainty factor and risks in supplying the required raw materials to the manufacturing site. Branch-and-bound and genetic algorithms are applied at some steps in the developed heuristic algorithm. The algorithm and the model are tested at a major timber processing enterprise in Primorsky Area. Four types of processors over three planning horizons were applied to compare the efficiency of the proposed algorithm with partial application of the genetic algorithm or branch-and-bound method. The findings analysis shows that, unlike the genetic algorithm, the unique one is more stable in terms of uncertainty of the input parameters in comparison with the branch-and-bound method. It provides the solutions in the models with a great number of variables. The algorithm is shown to be universal enough for its further modification in solving more complicated problems of the same class, containing a significantly larger number of probabilistic parameters that describe other uncertainties in the supply of raw materials. Further research is seen to include the development of the proposed algorithm to increase the rate of convergence for its better efficiency.


Author(s):  
Poonam Prakash Mishra

Inventory and supply chain management is a real concern for business community in today's globally competitive scenario. Various inventory models are proposed, significant parameters are analysed and finally optimized by researchers in order to give managers an insight for the different parameters. Mathematical and logical analysis of different inventory and supply chain models helps mangers in overall cost reduction and further higher revenue generation. Members often encounter conflicting interest and unforeseen scenario. So, all this make supply chain very complex and dynamic process. Complex and uncertain nature of inventory and supply chain, many times either it is not feasible to solve the issue with traditional methods or it is not cost effective. Thus many researchers are using artificial intelligence approach for investigation. Genetic algorithm is one among them that works efficiently with complex nature of the inventory and supply chain management. This article provides an up to date review about the role of GA in overall inventory and supply chain management.


Author(s):  
Poonam Prakash Mishra

Inventory and supply chain management is a real concern for business community in today's globally competitive scenario. Various inventory models are proposed, significant parameters are analysed and finally optimized by researchers in order to give managers an insight for the different parameters. Mathematical and logical analysis of different inventory and supply chain models helps mangers in overall cost reduction and further higher revenue generation. Members often encounter conflicting interest and unforeseen scenario. So, all this make supply chain very complex and dynamic process. Complex and uncertain nature of inventory and supply chain, many times either it is not feasible to solve the issue with traditional methods or it is not cost effective. Thus many researchers are using artificial intelligence approach for investigation. Genetic algorithm is one among them that works efficiently with complex nature of the inventory and supply chain management. This article provides an up to date review about the role of GA in overall inventory and supply chain management.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 565 ◽  
Author(s):  
Jiseong Noh ◽  
Hyun-Ji Park ◽  
Jong Soo Kim ◽  
Seung-June Hwang

Product demand forecasting plays a vital role in supply chain management since it is directly related to the profit of the company. According to companies’ concerns regarding product demand forecasting, many researchers have developed various forecasting models in order to improve accuracy. We propose a hybrid forecasting model called GA-GRU, which combines Genetic Algorithm (GA) with Gated Recurrent Unit (GRU). Because many hyperparameters of GRU affect its performance, we utilize GA that finds five kinds of hyperparameters of GRU including window size, number of neurons in the hidden state, batch size, epoch size, and initial learning rate. To validate the effectiveness of GA-GRU, this paper includes three experiments: comparing GA-GRU with other forecasting models, k-fold cross-validation, and sensitive analysis of the GA parameters. During each experiment, we use root mean square error and mean absolute error for calculating the accuracy of the forecasting models. The result shows that GA-GRU obtains better percent deviations than other forecasting models, suggesting setting the mutation factor of 0.015 and the crossover probability of 0.70. In short, we observe that GA-GRU can optimally set five types of hyperparameters and obtain the highest forecasting accuracy.


2014 ◽  
Vol 10 (1) ◽  
pp. 189
Author(s):  
Zulfahmi Indra ◽  
Subanar Subanar

AbstrakManajemen rantai pasok merupakan hal yang penting. Inti utama dari manajemen rantai pasok adalah proses distribusi. Salah satu permasalahan distribusi adalah strategi keputusan dalam menentukan pengalokasian banyaknya produk yang harus dipindahkan mulai dari tingkat manufaktur hingga ke tingkat pelanggan. Penelitian ini melakukan optimasi rantai pasok tiga tingkat mulai dari manufaktur-distributor-gosir-retail. Adapun pendekatan yang dilakukan adalah algoritma genetika adaptif dan terdistribusi. Solusi berupa alokasi banyaknya produk yang dikirim pada setiap tingkat akan dimodelkan sebagai sebuah kromosom. Parameter genetika seperti jumlah kromosom dalam populasi, probabilitas crossover dan probabilitas mutasi akan secara adaptif berubah sesuai dengan kondisi populasi pada generasi tersebut. Dalam penelitian ini digunakan 3 sub populasi yang bisa melakukan pertukaran individu setiap saat sesuai dengan probabilitas migrasi. Adapun hasil penelitian yang dilakukan 30 kali untuk setiap perpaduan nilai parameter genetika menunjukkan bahwa nilai biaya terendah yang didapatkan adalah 80,910, yang terjadi pada probabilitas crossover 0.4, probabilitas mutasi 0.1, probabilitas migrasi 0.1 dan migration rate 0.1. Hasil yang diperoleh lebih baik daripada metode stepping stone yang mendapatkan biaya sebesar 89,825. Kata kunci— manajemen rantai pasok, rantai pasok tiga tingkat, algortima genetika adaptif, algoritma genetika terdistribusi. Abstract Supply chain management is critical in business area. The main core of supply chain management is the process of distribution. One issue is the distribution of decision strategies in determining the allocation of the number of products that must be moved from the level of the manufacture to the customer level. This study take optimization of three levels distribution from manufacture-distributor-wholeshale-retailer. The approach taken is adaptive and distributed genetic algorithm. Solution in the form of allocation of the number of products delivered at each level will be modeled as a chromosome. Genetic parameters such as the number of chromosomes in the population, crossover probability and adaptive mutation probability will change adaptively according to conditions on the population of that generation. This study used 3 sub-populations that exchange individuals at any time in accordance with the probability of migration. The results of research conducted 30 times for each value of the parameter genetic fusion showed that the lowest cost value obtained is 80,910, which occurs at the crossover probability 0.4, mutation probability 0.1, the probability of migration 0.1 and migration rate 0.1. This result has shown that adaptive and distributed genetic algorithm is better than stepping stone method that obtained 89,825. Keywords— management supply chain, three level supply chain, adaptive genetic algorithm, distributed genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document