Reactive power planning problem considering multiple type of FACTS in power systems

Author(s):  
Vikash Kumar Gupta ◽  
Rohit Babu
2017 ◽  
Vol 26 (10) ◽  
pp. 1750155 ◽  
Author(s):  
Biplab Bhattacharyya ◽  
Saurav Raj

In the present work, reactive power planning problem along with voltage stability margin is addressed by effective co-ordination of reactive power sources. Modal analysis and L-index methods are used to detect weak nodes of the system accordingly. Differential Evolution (DE) and Genetic Algorithm (GA)-based optimization techniques are applied for the proper co-ordination of Var sources under base and increased loading conditions maintaining voltage stability of the connected power network. The problem is multi-objective and IEEE 30 bus system is taken as the standard system. It is observed that modal analysis based detection of weak nodes are more effective than the L-index-based detection. Moreover, the DE-based optimization algorithm gives better result compared to GA-based approach in maximizing reactive power reserves.


Author(s):  
Nihar Karmakar ◽  
Biplab Bhattacharyya

AbstractThis paper formulates and solves a techno-economic planning problem of reactive power (VAR) in power transmission systems under loadings. The objective of the proposed research work is to minimize the combination of installation cost of reactive power sources, power losses and operational cost while satisfying technical constraints. Initially, the positions for the placement of reactive power sources are determined technically. Different cost components such as VAR generation cost, line charging cost etc. are then added in the total operating cost in a most economical way. Finally, the optimal parameter setting subjected to reactive power planning (RPP) is obtained by taking advantages of hybrid soft computing techniques. For the justification of the efficiency and efficacy of the proposed approach the entire work is simulated on two inter-regional transmission networks. To validate the robustness and ease of the soft computing techniques in RPP the responses of benchmark functions and statistical proof are provided simultaneously.


2018 ◽  
Vol 9 (2) ◽  
pp. 215-231 ◽  
Author(s):  
Abdullah M. Shaheen ◽  
Shimaa R. Spea ◽  
Sobhy M. Farrag ◽  
Mohammed A. Abido

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Over the years the optimization in various areas of power system has immensely attracted the attention of power engineers and researchers. RPP problem is one of such areas. This is done by the placement of reactive power sources in the weak buses and thereafter minimizing the operating cost of the system which is directly dependent on the system transmission loss. The work proposed in this article utilizes FVSI method to detect the weak bus. GWO-PSO is proposed in the current work for providing optimal solution to RPP problem. To test the efficacy of the proposed technique, comparative analysis is then performed among the variants of PSO and hybrid GWO-PSO. The optimal solution rendered by the proposed method is compared with other heuristic algorithms. The proposed method of GWO-PSO generates a reduction of 4.25% in operating cost for IEEE 30 bus and 5.99% for New England 39 bus system. The comparison thus yields that the GWO-PSO hybrid method is superior in generating optimality, diversity and is efficient to generate solution strategies for RPP even in a practical power network.


Sign in / Sign up

Export Citation Format

Share Document