scholarly journals Hybrid intelligence approach for multi-load level reactive power planning using VAR compensator in power transmission network

Author(s):  
Nihar Karmakar ◽  
Biplab Bhattacharyya

AbstractThis paper formulates and solves a techno-economic planning problem of reactive power (VAR) in power transmission systems under loadings. The objective of the proposed research work is to minimize the combination of installation cost of reactive power sources, power losses and operational cost while satisfying technical constraints. Initially, the positions for the placement of reactive power sources are determined technically. Different cost components such as VAR generation cost, line charging cost etc. are then added in the total operating cost in a most economical way. Finally, the optimal parameter setting subjected to reactive power planning (RPP) is obtained by taking advantages of hybrid soft computing techniques. For the justification of the efficiency and efficacy of the proposed approach the entire work is simulated on two inter-regional transmission networks. To validate the robustness and ease of the soft computing techniques in RPP the responses of benchmark functions and statistical proof are provided simultaneously.

Author(s):  
Nihar Karmakar ◽  
Biplab Bhattacharyya

Abstract This research work proposes a planning strategy pertaining to the techno-economic operation of Indian power systems. The proposed strategy focused on the reactive power (VAr) planning (RPP) subject to the system operating cost minimization ensuring system security. To mitigate the RPP issue, unique meta-heuristic hybridized techniques are adopted to size the optimal parameter settings such as alternator’s reactive power, tap settings of transformers etc. instigated by power flow analysis satisfying all equality and inequality constraints. The controlling variables are optimally determined to solve this non-linear RPP problem. The bottleneck for the installation of static VAr compensators at weak buses is also wiped out by different analytical techniques viz. loss sensitivity, power flow and modal analysis. Two different inter-regional transmission networks prevailing in India are considered to measure the adaptability, efficacy and efficiency of the proposed approach. The results obtained by applying the proposed approach have confirmed that network loss-minimization procedures produce an acceptable solution and reduce the operating cost which is especially important in RPP. The responses of bench mark functions and statistical analysis of the outcomes from both systems allow us to assess the overall efficiency and efficacy of the proposed techno-economic planning approach.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Over the years the optimization in various areas of power system has immensely attracted the attention of power engineers and researchers. RPP problem is one of such areas. This is done by the placement of reactive power sources in the weak buses and thereafter minimizing the operating cost of the system which is directly dependent on the system transmission loss. The work proposed in this article utilizes FVSI method to detect the weak bus. GWO-PSO is proposed in the current work for providing optimal solution to RPP problem. To test the efficacy of the proposed technique, comparative analysis is then performed among the variants of PSO and hybrid GWO-PSO. The optimal solution rendered by the proposed method is compared with other heuristic algorithms. The proposed method of GWO-PSO generates a reduction of 4.25% in operating cost for IEEE 30 bus and 5.99% for New England 39 bus system. The comparison thus yields that the GWO-PSO hybrid method is superior in generating optimality, diversity and is efficient to generate solution strategies for RPP even in a practical power network.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Over the years the optimization in various areas of power system has immensely attracted the attention of power engineers and researchers. RPP problem is one of such areas. This is done by the placement of reactive power sources in the weak buses and thereafter minimizing the operating cost of the system which is directly dependent on the system transmission loss. The work proposed in this article utilizes FVSI method to detect the weak bus. GWO-PSO is proposed in the current work for providing optimal solution to RPP problem. To test the efficacy of the proposed technique, comparative analysis is then performed among the variants of PSO and hybrid GWO-PSO. The optimal solution rendered by the proposed method is compared with other heuristic algorithms. The proposed method of GWO-PSO generates a reduction of 4.25% in operating cost for IEEE 30 bus and 5.99% for New England 39 bus system. The comparison thus yields that the GWO-PSO hybrid method is superior in generating optimality, diversity and is efficient to generate solution strategies for RPP even in a practical power network.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750155 ◽  
Author(s):  
Biplab Bhattacharyya ◽  
Saurav Raj

In the present work, reactive power planning problem along with voltage stability margin is addressed by effective co-ordination of reactive power sources. Modal analysis and L-index methods are used to detect weak nodes of the system accordingly. Differential Evolution (DE) and Genetic Algorithm (GA)-based optimization techniques are applied for the proper co-ordination of Var sources under base and increased loading conditions maintaining voltage stability of the connected power network. The problem is multi-objective and IEEE 30 bus system is taken as the standard system. It is observed that modal analysis based detection of weak nodes are more effective than the L-index-based detection. Moreover, the DE-based optimization algorithm gives better result compared to GA-based approach in maximizing reactive power reserves.


2014 ◽  
Vol 986-987 ◽  
pp. 394-399
Author(s):  
Xue Yong Xu ◽  
Pan Zhou ◽  
Qi Zhe Huang ◽  
Chun Ming Deng ◽  
Meng Meng Shi ◽  
...  

Along with the increasing use of cables in power grid and the increasing ration of distributed power sources’ synchronization, such as small hydropower’s synchronization, increasing the reactive power transmission on the line, make it difficult to achieve the balance of reactive hierarchical partition. Take a certain region’s power grid for actual examples, after the installation of magnetic control reactor (MCR), using immune genetic algorithm (IGA) to coordinate the capacity of magnetic control reactor and the existing reactive power resources, the results show that the magnetic control reactor does much good to absorb the system’s excessive reactive power and limit the voltage’s increasing.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2283
Author(s):  
Atif Naveed Khan ◽  
Kashif Imran ◽  
Muhammad Nadeem ◽  
Anamitra Pal ◽  
Abraiz Khattak ◽  
...  

Flexible AC Transmission Systems (FACTS) are essential devices used for the efficient performance of modern power systems and many developing countries lack these devices. Due to the non-existence of these advanced technologies, the national grid remains weak and vulnerable to power stability issues that can jeopardize system stability. This study proposes novel research to solve issues of an evolving national grid through the installation of FACTS devices. FACTS devices play a crucial role in minimizing active power losses while managing reactive power flows to keep the voltages within their respective limits. Due to the high costs of FACTS, optimization must be done to discover optimal locations as well as ratings of these devices. However, due to the nonlinearity, it is a challenging task to find the optimal locations and appropriate sizes of these devices. Shunt VARs Compensators (SVCs) and Thyristor-Controlled Series Compensators (TCSCs) are the two FACTS devices considered for the study. Optimal locations for SVCs and TCSCs are determined by Voltage Collapse Proximity Index (VCPI) and Line Stability Index (Lmn), respectively. Particle Swarm Optimization (PSO) is employed to find the ideal rating for FACTS devices to minimize the system operating cost (cost due to active power loss and capital cost of FACTS devices). This technique is applied to IEEE (14 and 30) bus systems. Moreover, reliable operation of the electricity grid through the placement of FACTS for developing countries has also been analysed; Pakistan being a developing country has been selected as a case study. The planning problem has been solved for the present as well as for the forecasted power system. Consequently, in the current national network, 6.21% and 6.71% reduction in active and reactive power losses have been observed, respectively. Moreover, voltage profiles have been improved significantly. A detailed financial analysis covering the calculation of Operation Cost (OC) of the national grid before and after the placement of FACTS devices is carried out.


Sign in / Sign up

Export Citation Format

Share Document