scholarly journals Cymbomonas tetramitiformis - a peculiar prasinophyte with a taste for bacteria sheds light on plastid evolution

Symbiosis ◽  
2016 ◽  
Vol 71 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Przemysław Gagat ◽  
Paweł Mackiewicz
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Max E. Schön ◽  
Vasily V. Zlatogursky ◽  
Rohan P. Singh ◽  
Camille Poirier ◽  
Susanne Wilken ◽  
...  

AbstractThe endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.


2008 ◽  
Vol 44 (5) ◽  
pp. 1097-1107 ◽  
Author(s):  
M. Virginia Sanchez-Puerta ◽  
Charles F. Delwiche
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Fabio Facchinelli ◽  
Andreas P. M. Weber

2010 ◽  
Vol 28 (1) ◽  
pp. 449-458 ◽  
Author(s):  
S. Whelan ◽  
B. P. Blackburne ◽  
M. Spencer

2015 ◽  
Vol 112 (33) ◽  
pp. 10247-10254 ◽  
Author(s):  
Richard G. Dorrell ◽  
Christopher J. Howe

After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.


2011 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Jeferson Gross ◽  
Debashish Bhattacharya
Keyword(s):  

2010 ◽  
Vol 365 (1541) ◽  
pp. 729-748 ◽  
Author(s):  
Patrick J. Keeling

Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.


2014 ◽  
Vol 31 (7) ◽  
pp. 1728-1740 ◽  
Author(s):  
Kyungtaek Lim ◽  
Ichizo Kobayashi ◽  
Kenta Nakai
Keyword(s):  

2021 ◽  
Author(s):  
Max E. Schön ◽  
Vasily V. Zlatogursky ◽  
Rohan P. Singh ◽  
Camille Poirier ◽  
Susanne Wilken ◽  
...  

AbstractThe endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida, and are widely assumed to have a single origin. Here, we used single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, we find based on the analysis of 43 single-cell genomes that Picozoa belong to Archaeplastida as a robust sister group to the clade containing red algae and the phagotrophic rhodelphids. Our analyses of this extensive data support the hypothesis that Picozoa lack a plastid, and further show no evidence for an early cryptic endosymbiosis with cyanobacteria. The position of Picozoa in the eukaryotic tree represents the first known case of a plastid-lacking lineage closely related to one of the main archaeplastid branches. The implications of these findings for our understanding of plastid evolution are unprecedented, and can either be interpreted as the first report of complete plastid loss in a free-living taxon, or as an indication that red algae and rhodelphids obtained their plastids independently of other archaeplastids.


Sign in / Sign up

Export Citation Format

Share Document