sister group
Recently Published Documents


TOTAL DOCUMENTS

1436
(FIVE YEARS 426)

H-INDEX

72
(FIVE YEARS 9)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Huan Zhang ◽  
Wei Fang ◽  
Xiaoyun Zhao ◽  
Xin Jiang ◽  
Adam Stroiński ◽  
...  

Ricaniidae is a relatively small planthopper family with about 69 genera and 442 species worldwide. Members of this family occur throughout the warm temperate and tropical regions. Some species cause devastating damage to major agricultural and economic plants. However, the relationship between Ricaniidae and other families of Fulgoroidea needs to be further explored. The morphological definitions of the two biggest genera, Pochazia Amyot & Serville, 1843 and Ricania Germar, 1818 (the type genus of Ricaniidae) remain controversial. In this study, mitogenomes of five representatives in these two genera were decoded using the next-generation sequence method and genome assembly. Results showed that their complete mitogenomes are circular DNA molecules with 15,457 to 16,411 bp. All protein-coding genes (PCGs) begin with the start codon ATN, GTG or TTG and end with TAA, TAG, an incomplete stop codon single T or an incomplete stop codon single A. A lost DHU arm was discovered in the trnS gene of the five mitogenomes and the trnV gene within Pochaziaconfusa, Pochazia guttifera and Ricania simulans. The remnant tRNAs folded into clover-leaf structures. The sliding window, genetic distance, and Ka/Ks analyses indicated that the cox1 gene is the slowest evolving and is relatively conserved. The phylogenetic tree topologies support (Delphacidae + (((Issidae + (Lophopidae + Caliscelidae)) + (Flatidae + Ricaniidae)) + (Achilidae + (Dictyopharidae + Fulgoridae)))) as the best topology, as recognized by both PhyloBayes, RAxML and MrBayes based on four data sets (PCG, PCGRNA, PCG12, PCG12RNA). The monophyly of Ricaniidae and the sister group status of two families Flatidae and Ricaniidae are supported, but all analyses failed to support the monophyly of Pochazia and Ricania. The diagnoses between these two genera cannot be resolved until more evidence is acquired.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marco Schade ◽  
Sebastian Stumpf ◽  
Jürgen Kriwet ◽  
Christoph Kettler ◽  
Cathrin Pfaff

AbstractNodosauridae is a group of thyreophoran dinosaurs characterized by a collar of prominent osteoderms. In comparison to its sister group, the often club-tailed ankylosaurids, a different lifestyle of nodosaurids could be assumed based on their neuroanatomy and weaponry, e.g., regarding applied defensive strategies. The holotype of the nodosaurid Struthiosaurus austriacus consists of a single partial braincase from the Late Cretaceous of Austria. Since neuroanatomy is considered to be associated with ecological tendencies, we created digital models of the braincase based on micro-CT data. The cranial endocast of S. austriacus generally resembles those of its relatives. A network of vascular canals surrounding the brain cavity further supports special thermoregulatory adaptations within Ankylosauria. The horizontal orientation of the lateral semicircular canal independently confirms previous appraisals of head posture for S. austriacus and, hence, strengthens the usage of the LSC as proxy for habitual head posture in fossil tetrapods. The short anterior and angular lateral semicircular canals, combined with the relatively shortest dinosaurian cochlear duct known so far and the lack of a floccular recess suggest a rather inert lifestyle without the necessity of sophisticated senses for equilibrium and hearing in S. austriacus. These observations agree with an animal that adapted to a comparatively inactive lifestyle with limited social interactions.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 58
Author(s):  
Luiz Felipe Lima da Silveira ◽  
William Lima ◽  
Cláudio Ruy Vasconcelos da Fonseca ◽  
Joseph McHugh

Most firefly genera have poorly defined taxonomic boundaries, especially in the Neotropics, where they are more diverse and more difficult to identify. Recent advances that shed light on the diversity of fireflies in South America have focused mainly on Atlantic Rainforest taxa, whereas lampyrids in other biomes remained largely unstudied. We found three new firefly species endemic to the Amazon basin that share unique traits of the male abdomen where sternum VIII and the pygidium are modified and likely work as a copulation clamp. Here we test and confirm the hypothesis that these three species form a monophyletic lineage and propose Haplocauda gen. nov. to accommodate the three new species. Both maximum parsimony and probabilistic (Bayesian and maximum likelihood) phylogenetic analyses confirmed Haplocauda gen. nov. monophyly, and consistently recovered it as the sister group to Scissicauda, fireflies endemic to the Atlantic Rainforest that also feature a copulation clamp on abdominal segment VIII, although with a different configuration. We provide illustrations, diagnostic descriptions, and keys to species based on males and females. The three new species were sampled from different regions, and are likely allopatric, a common pattern among Amazonian taxa.


2021 ◽  
Author(s):  
Philippe Colson ◽  
Jeremy Delerce ◽  
Emilie Burel ◽  
Jordan Dahan ◽  
Agnes Jouffret ◽  
...  

SARS-CoV-2 variants have become a major virological, epidemiological and clinical concern, particularly with regard to the risk of escape from vaccine-induced immunity. Here we describe the emergence of a new variant. For twelve SARS-CoV-positive patients living in the same geographical area of southeastern France, qPCR testing that screen for variant-associated mutations showed an atypical combination. The index case returned from a travel in Cameroon. The genomes were obtained by next-generation sequencing with Oxford Nanopore Technologies on GridION instruments within approximately 8 h. Their analysis revealed 46 mutations and 37 deletions resulting in 30 amino acid substitutions and 12 deletions. Fourteen amino acid substitutions, including N501Y and E484K, and 9 deletions are located in the spike protein. This genotype pattern led to create a new Pangolin lineage named B.1.640.2, which is a phylogenetic sister group to the old B.1.640 lineage renamed B.1.640.1. Both lineages differ by 25 nucleotide substitutions and 33 deletions. The mutation set and phylogenetic position of the genomes obtained here indicate based on our previous definition a new variant we named 'IHU'. These data are another example of the unpredictability of the emergence of SARS-CoV-2 variants, and of their introduction in a given geographical area from abroad.


2021 ◽  
Author(s):  
Qing-Miao Yuan ◽  
Xu Luo ◽  
Jing Cao ◽  
Yu-Bao Duan

Abstract Background Nuthatches (genus Sitta) comprise a group of Passeriformes. With the publication of more mitochondrial genome data, there has been considerable focus on the taxonomic status of the nuthatches. To understand the phylogenetic position of Sitta and phylogenetic relations within this genus, we sequenced and analyzed the complete mitochondrial genomes of three species, S. himalayensis, S. nagaensis and S. yunnanensis, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results The mitochondrial genomes of three Sitta species are 16,822-16,830 bp in length and consisted of 37 genes and a control region. This study recovered the same gene arrangement found in the mitogenomes of Gallus gallus, which is considered the typical ancestral avian gene order. All tRNAs were predicted to form the typical cloverleaf secondary structures. Bayesian inference and maximum likelihood phylogenetic analyses of sequences of 18 species obtained a well-supported topology. The family Sittidae is the sister-group of Troglodytidae, and the genus Sitta can be divided into 3 major clades. We demonstrated the phylogenetic relationships within genus Sitta (S. carolinensis + (S. villosa + S. yunnanensis + (S. himalayensis + (S. europaea + S. nagaensis)))).


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ethan Ozment ◽  
Arianna N Tamvacakis ◽  
Jianhong Zhou ◽  
Pablo Yamild Rosiles-Loeza ◽  
Esteban Elías Escobar-Hernandez ◽  
...  

Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types - a lineage-specific sensory-effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here we show that the class IV POU homeodomain transcription factor (POU-IV) - an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria - controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes - including the transmembrane-receptor-encoding gene polycystin 1 - specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12691
Author(s):  
Jiajia Wang ◽  
Yu Bai ◽  
Haifeng Zhao ◽  
Ruinan Mu ◽  
Yan Dong

Background There have been extensive debates on the interrelationships among the four major classes of Myriapoda—Chilopoda, Symphyla, Diplopoda, and Pauropoda. The core controversy is the position of Pauropoda; that is, whether it should be grouped with Symphyla or Diplopoda as a sister group. Two recent phylogenomic studies separately investigated transcriptomic data from 14 and 29 Myriapoda species covering all four groups along with outgroups, and proposed two different topologies of phylogenetic relationships. Methods Building on these studies, we extended the taxon sampling by investigating 39 myriapods and integrating the previously available data with three new transcriptomic datasets generated in this study. Our analyses present the phylogenetic relationships among the four major classes of Myriapoda with a more abundant taxon sampling and provide a new perspective to investigate the above-mentioned question, where visual genes’ identification were conducted. We compared the appearance pattern of genes, grouping them according to their classes and the visual pathways involved. Positive selection was detected for all identified visual genes between every pair of 39 myriapods, and 14 genes showed positive selection among 27 pairs. Results From the results of phylogenomic analyses, we propose that Symphyla is a sister group of Pauropoda. This stance has also received strong support from tree inference and topology tests.


2021 ◽  
Vol 46 (4) ◽  
pp. 1121-1130
Author(s):  
Edward E. Schilling ◽  
Rosario Redonda-Martínez ◽  
Esteban Manuel Martínez Salas ◽  
Jose L. Panero

Abstract— A molecular phylogenetic investigation was carried out to clarify aspects of the systematics of Oxylobus, a primarily Mexican alpine genus of Eupatorieae. Analysis of sequence data from two nuclear (nrDNA ITS, ETS) and three plastid markers (rbcL, ndhF, matK) confirmed the monophyly of Oxylobus and placed species of Ageratina as its sister group. A survey of 56 samples of Oxylobus using nrDNA ITS and ETS provided support for the currently accepted species, and showed the recently described O. coyulensis to be distinct and the sister group to the rest of the genus. The results also confirmed the placement of O. juarezensis in synonymy with O. subglabrus. The results of a broad survey of Ageratina for ITS data showed that it is likely not monophyletic as currently circumscribed. The phylogenetic results also highlighted the distinctiveness of Piqueria and Piqueriopsis as a distinct clade at the base of Eupatorieae.


2021 ◽  
Vol 78 (2) ◽  
pp. e116
Author(s):  
Mike Thiv ◽  
Manuela Gouveia ◽  
Miguel Menezes de Sequeira

Macaronesian laurel forests harbour many herbs and laurophyllous trees with Mediterranean/European or Macaronesian affinities. Traditionally, the origin of these taxa has been explained by the relict hypothesis interpreting these taxa as relics of formerly widespread laurel forests in the European continent and the Mediterranean. We analysed the phylogenetic relationships of the Madeiran laurel forest endemic Goodyera macrophylla (Orchidaceae) using sequences from the nuclear ribosomal DNA Internal Transcribed Spacers (ITS) and plastid DNA regions. The results were incongruent, either the two Central American G. brachyceras and G. striata (ITS) or the North American G. oblongifolia (plastid DNA) were sister group to G. macrophylla. Nonetheless, biogeographic analyses indicated an American origin of this nemoral laurel forest plant in the two data sets. Molecular clock analyses suggest a colonisation of Madeira in the span of the upper Miocene/lower Pliocene to the Pleistocene. Although the relict hypothesis cannot be ruled out by our data when assuming extinction events on the European and northern African mainland, dispersal from Central or North America to the archipelago of Madeira is a much more likely explanation of the data.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1986
Author(s):  
Yanan Xiang ◽  
Mengyuan Zhao ◽  
Qingbo Huo ◽  
Yuzhou Du

Mitochondrial genomes of three stoneflies, e.g., Claassenia magna Wu, 1948, Claassenia sp. 2 and Claassenia xucheni Chen, 2019 were sequenced in this study with 15,774, 15,777 and 15,746 bp in length, respectively. Each mitogenome contained 37 genes including 22 tRNAs, two ribosomal RNAs, 13 protein-coding genes (PCGs), and a noncoding control region (CR). In general, standard ATN start and TAN termination codons were evident in the PCGs. Although the dihydrouridine arm was absent in trnSer, the remaining 21 tRNAs displayed the characteristic cloverleaf secondary structure. Stem-loop structures were identified in the CRs of all three mitogenomes, but tandem repeats were only apparent in Claassenia xucheni. The mitogenomes of three Claassenia species were analyzed and compared with mitogenomes in 21 other stoneflies from the Perlidae and three Euholognatha species (Rhopalopsole bulbifera, Capnia zijinshana and Amphinemura longispina) as outgroups. Phylogenetic analyses using maximum likelihood and Bayesian inference. Phylogenetic analysis supported that Claassenia was recovered as the sister group of other Perlinae and Claassenia+Perlinae emerged from the paraphyletic Acroneuriinae. The final results supported that Claassenia was classified into subfamily Perlinae and proposed Claassenia represent a transitional group of the subfamilies Acroneuriinae and Perlinae. This study provided new molecular evidence for exploring the debatable taxonomic position of the genus Claassenia in Perlidae.


Sign in / Sign up

Export Citation Format

Share Document