endosymbiotic origin
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 17 (11) ◽  
pp. e1010096
Author(s):  
Sarah Pamukcu ◽  
Aude Cerutti ◽  
Yann Bordat ◽  
Sonia Hem ◽  
Valérie Rofidal ◽  
...  

Iron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight notable differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Max E. Schön ◽  
Vasily V. Zlatogursky ◽  
Rohan P. Singh ◽  
Camille Poirier ◽  
Susanne Wilken ◽  
...  

AbstractThe endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.


2021 ◽  
Vol 22 (21) ◽  
pp. 11338
Author(s):  
Pauline Andrieux ◽  
Christophe Chevillard ◽  
Edecio Cunha-Neto ◽  
João Paulo Silva Nunes

Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
I.V. Chicherin ◽  
S.V. Dukhalin ◽  
R.A. Khannanov ◽  
M.V. Baleva ◽  
S.A. Levitskii ◽  
...  

Mitochondria are energy producing organelles of the eukaryotic cell, involved in the synthesis of key metabolites, calcium homeostasis and apoptosis. Protein biosynthesis in these organelles is a relic of its endosymbiotic origin. While mitochondrial translational factors have homologues among prokaryotes, they possess a number of unique traits. Remarkably as many as four mammalian mitochondrial proteins possess a clear similarity with translation termination factors. The review focuses on the ICT1, which combines several functions. It is a non-canonical termination factor for protein biosynthesis, a rescue factor for stalled mitochondrial ribosomes, a structural protein and a regulator of proliferation, cell cycle, and apoptosis. Such a diversity of roles demonstrates the high functionality of mitochondrial translation associated proteins and their relationship with numerous processes occurring in a living cell.


Author(s):  
Paria Ali Pour ◽  
Sina Hosseinian ◽  
Arash Kheradvar

Mitochondrial Transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects; mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species (ROS). Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to its semi-autonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. First, we outline the different mitochondrial isolation and transfer techniques. Second, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia. Lastly, we elaborate our vision on how mitochondrial transplantation may mitigate other cardiac conditions secondary to mitochondrial damage and dysfunction, such as atherosclerosis and ST-elevated myocardial infarction.


2021 ◽  
Author(s):  
Max E. Schön ◽  
Vasily V. Zlatogursky ◽  
Rohan P. Singh ◽  
Camille Poirier ◽  
Susanne Wilken ◽  
...  

AbstractThe endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida, and are widely assumed to have a single origin. Here, we used single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, we find based on the analysis of 43 single-cell genomes that Picozoa belong to Archaeplastida as a robust sister group to the clade containing red algae and the phagotrophic rhodelphids. Our analyses of this extensive data support the hypothesis that Picozoa lack a plastid, and further show no evidence for an early cryptic endosymbiosis with cyanobacteria. The position of Picozoa in the eukaryotic tree represents the first known case of a plastid-lacking lineage closely related to one of the main archaeplastid branches. The implications of these findings for our understanding of plastid evolution are unprecedented, and can either be interpreted as the first report of complete plastid loss in a free-living taxon, or as an indication that red algae and rhodelphids obtained their plastids independently of other archaeplastids.


2021 ◽  
Author(s):  
Sarah Pamukcu ◽  
Aude Cerutti ◽  
Sonia Hem ◽  
Valérie Rofidal ◽  
Sébastien Besteiro

AbstractIron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight striking differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.


2021 ◽  
Vol 68 (1) ◽  
pp. 1-16
Author(s):  
I. N. Stadnichuk ◽  
V. V. Kusnetsov

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Thomas R. Meister ◽  
Yong Tang ◽  
Michael J. Pulkoski-Gross ◽  
Ellen Yeh

ABSTRACT Plasmodium parasites and related apicomplexans contain an essential “complex plastid” organelle of secondary endosymbiotic origin, the apicoplast. Biogenesis of this complex plastid poses a unique challenge requiring evolution of new cellular machinery. We previously conducted a mutagenesis screen for essential apicoplast biogenesis genes to discover organellar pathways with evolutionary and biomedical significance. Here we validate and characterize a gene candidate from our screen, Pf3D7_0913500. Using a conditional knockdown strain, we show that Pf3D7_0913500 depletion causes growth inhibition that is rescued by the sole essential product of the apicoplast, isopentenyl pyrophosphate (IPP), and results in apicoplast loss. Because Pf3D7_0913500 had no previous functional annotation, we name it apicoplast-minus IPP-rescued 4 (AMR4). AMR4 has an annotated CaaX protease and bacteriocin processing (CPBP) domain, which in eukaryotes typically indicates a role in CaaX postprenylation processing. Indeed, AMR4 is the only putative CaaX-like protease in Plasmodium parasites which are known to require protein prenylation, and we confirm that the conserved catalytic residue of AMR4 (E352) is required for its apicoplast function. However, we unexpectedly find that AMR4 does not act in a CaaX postprenylation processing pathway in Plasmodium falciparum. Instead, we find that AMR4 is imported into the apicoplast and is derived from a cyanobacterial CPBP gene which was retained through both primary and secondary endosymbiosis. Our findings suggest that AMR4 is not a true CaaX protease, but instead it performs a conserved, uncharacterized chloroplast function that has been retained for complex plastid biogenesis. IMPORTANCE Plasmodium parasites, which cause malaria, and related apicomplexans are important human and veterinary pathogens. These parasites represent a highly divergent and understudied branch of eukaryotes, and as such often defy the expectations set by model organisms. One striking example of unique apicomplexan biology is the apicoplast, an essential but nonphotosynthetic plastid derived from an unusual secondary (eukaryote-eukaryote) endosymbiosis. Endosymbioses are a major driver of cellular innovation, and apicoplast biogenesis pathways represent a hot spot for molecular evolution. We previously conducted an unbiased screen for apicoplast biogenesis genes in P. falciparum to uncover these essential and innovative pathways. Here, we validate a novel gene candidate from our screen and show that its role in apicoplast biogenesis does not match its functional annotation predicted by model eukaryotes. Our findings suggest that an uncharacterized chloroplast maintenance pathway has been reused for complex plastid biogenesis in this divergent branch of pathogens.


2020 ◽  
Vol 21 (17) ◽  
pp. 6082 ◽  
Author(s):  
Yi Zhang ◽  
Aihong Zhang ◽  
Xiuming Li ◽  
Congming Lu

Chloroplasts are plant organelles that carry out photosynthesis, produce various metabolites, and sense changes in the external environment. Given their endosymbiotic origin, chloroplasts have retained independent genomes and gene-expression machinery. Most genes from the prokaryotic ancestors of chloroplasts were transferred into the nucleus over the course of evolution. However, the importance of chloroplast gene expression in environmental stress responses have recently become more apparent. Here, we discuss the emerging roles of the distinct chloroplast gene expression processes in plant responses to environmental stresses. For example, the transcription and translation of psbA play an important role in high-light stress responses. A better understanding of the connection between chloroplast gene expression and environmental stress responses is crucial for breeding stress-tolerant crops better able to cope with the rapidly changing environment.


Sign in / Sign up

Export Citation Format

Share Document