protein trafficking
Recently Published Documents


TOTAL DOCUMENTS

1106
(FIVE YEARS 292)

H-INDEX

85
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hantian Qiu ◽  
Yuta Tsurumi ◽  
Yohei Katoh ◽  
Kazuhisa Nakayama

AbstractCilia play crucial roles in sensing and transducing extracellular signals. Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes, with the aid of kinesin-2 and dynein-2 motors. The dynein-2 complex drives retrograde trafficking of the IFT machinery after its transportation to the ciliary tip as an IFT cargo. Mutations in genes encoding the dynein-2-specific subunits (DYNC2H1, WDR60, WDR34, DYNC2LI1, and TCTEX1D2) are known to cause skeletal ciliopathies. We here demonstrate that several pathogenic variants of DYNC2LI1 are compromised regarding their ability to interact with DYNC2H1 and WDR60. When expressed in DYNC2LI1-knockout cells, deletion variants of DYNC2LI1 were unable to rescue the ciliary defects of these cells, whereas missense variants, as well as wild-type DYNC2LI1, restored the normal phenotype. DYNC2LI1-knockout cells coexpressing one pathogenic deletion variant together with wild-type DYNC2LI1 demonstrated a normal phenotype. In striking contrast, DYNC2LI1-knockout cells coexpressing the deletion variant in combination with a missense variant, which mimics the situation of cells of compound heterozygous ciliopathy individuals, demonstrated ciliary defects. Thus, DYNC2LI1 deletion variants found in individuals with skeletal ciliopathies cause ciliary defects when combined with a missense variant, which expressed on its own does not cause substantial defects.


2022 ◽  
Vol 14 ◽  
Author(s):  
Amina Becic ◽  
Jennifer Leifeld ◽  
Javeria Shaukat ◽  
Michael Hollmann

Tetraspanins (Tspans) comprise a membrane protein family structurally defined by four transmembrane domains and intracellular N and C termini that is found in almost all cell types and tissues of eukaryotes. Moreover, they are involved in a bewildering multitude of diverse biological processes such as cell adhesion, motility, protein trafficking, signaling, proliferation, and regulation of the immune system. Beside their physiological roles, they are linked to many pathophysiological phenomena, including tumor progression regulation, HIV-1 replication, diabetes, and hepatitis. Tetraspanins are involved in the formation of extensive protein networks, through interactions not only with themselves but also with numerous other specific proteins, including regulatory proteins in the central nervous system (CNS). Interestingly, recent studies showed that Tspan7 impacts dendritic spine formation, glutamatergic synaptic transmission and plasticity, and that Tspan6 is correlated with epilepsy and intellectual disability (formerly known as mental retardation), highlighting the importance of particular tetraspanins and their involvement in critical processes in the CNS. In this review, we summarize the current knowledge of tetraspanin functions in the brain, with a particular focus on their impact on glutamatergic neurotransmission. In addition, we compare available resolved structures of tetraspanin family members to those of auxiliary proteins of glutamate receptors that are known for their modulatory effects.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jean Marie Delalande ◽  
Nandor Nagy ◽  
Conor J. McCann ◽  
Dipa Natarajan ◽  
Julie E. Cooper ◽  
...  

TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Veronica Sanchez ◽  
William Britt

The assembly of human cytomegalovirus (HCMV) and other herpesviruses includes both nuclear and cytoplasmic phases. During the prolonged replication cycle of HCMV, the cell undergoes remarkable changes in cellular architecture that include marked increases in nuclear size and structure as well as the reorganization of membranes in cytoplasm. Similarly, significant changes occur in cellular metabolism, protein trafficking, and cellular homeostatic functions. These cellular modifications are considered integral in the efficient assembly of infectious progeny in productively infected cells. Nuclear egress of HCMV nucleocapsids is thought to follow a pathway similar to that proposed for other members of the herpesvirus family. During this process, viral nucleocapsids must overcome structural barriers in the nucleus that limit transit and, ultimately, their delivery to the cytoplasm for final assembly of progeny virions. HCMV, similar to other herpesviruses, encodes viral functions that co-opt cellular functions to overcome these barriers and to bridge the bilaminar nuclear membrane. In this brief review, we will highlight some of the mechanisms that define our current understanding of HCMV egress, relying heavily on the current understanding of egress of the more well-studied α-herpesviruses, HSV-1 and PRV.


2021 ◽  
Vol 5 (3) ◽  
pp. e202101185
Author(s):  
Irene Riera-Tur ◽  
Tillman Schäfer ◽  
Daniel Hornburg ◽  
Archana Mishra ◽  
Miguel da Silva Padilha ◽  
...  

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like β-sheet proteins (β proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, β proteins interact with and sequester AP-3 μ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3μ1 expression ameliorates neurotoxicity caused by β proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


2021 ◽  
Author(s):  
William Kasberg ◽  
Peter Luong ◽  
Michael Hanna ◽  
Kayla Minushkin ◽  
Annabelle Tsao ◽  
...  

Abstract Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete membrane subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration of the coat subunit Sar1 and further stabilized by assembly of a multi-layer complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the unconventional carriers that form fail to efficiently deliver their contents to subsequent compartments in the secretory pathway. Instead, cargoes accumulate immediately adjacent to the perinuclear Golgi under these conditions, together with components of the COPII coat. Our findings highlight new mechanisms by which COPII promotes transport carrier biogenesis and strongly suggests that the Sar1 GTPase plays a critical role in transport carrier uncoating ahead of membrane fusion and secretory cargo delivery at acceptor compartments.


2021 ◽  
Author(s):  
Kevin P Koster ◽  
Eden Flores-Barrera ◽  
Emilce Artur de la Villarmois ◽  
Thu T.A. Nguyen ◽  
Amanda Niqula ◽  
...  

Palmitoylation and depalmitoylation are the dichotomic processes of lipid modification regulating protein trafficking, recycling, and degradation, thereby controlling proteostasis. Despite our understanding of palmitoylation, depalmitoylation is far less studied. Here, we study a lysosomal depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), associated with the devastating neurodegenerative condition CLN1 disease and show that dark-rearing Ppt1-/- mice, which induces synaptic upscaling in vivo, worsen the symptoms. In Ppt1-/- cortical neurons, upscaling induction triggers exaggerated responses of synaptic calcium-permeable AMPA receptors composed of palmitoylated GluA1 subunits. Consequently, Ppt1-/- visual cortex exhibits hypersynchrony in vivo. Remarkably, we also find an overload of palmitoylated A-kinase anchor protein 5 (Akap5) in Ppt1-/- mouse brains, leading to microglial activation through NFAT. These findings indicate Ppt1 acts as a gatekeeper of homeostatic plasticity by regulating the proteostasis of palmitoylated synaptic proteins. Moreover, our results suggest that perturbed depalmitoylation results in neuroinflammation, which is common to neurodegenerative diseases.


2021 ◽  
Author(s):  
Sharon Wong ◽  
Nikhil Awatade ◽  
Miro Astore ◽  
Katelin Allan ◽  
Michael Carnell ◽  
...  

Characterisation of I37R, a novel mutation in the lasso motif of ABC-transporter CFTR, a chloride channel, was conducted by theratyping using CFTR potentiators which increase channel gating activity and correctors which repair protein trafficking defects. I37R-CFTR function was characterised using intestinal current measurements (ICM) in rectal biopsies, forskolin-induced swelling (FIS) in intestinal organoids and short circuit current measurements (Isc) in organoid-derived monolayers from an individual with I37R/F508del CFTR genotype. We demonstrated that the I37R-CFTR mutation results in a residual function defect amenable to treatment with potentiators and type III, but not to type I, correctors. Molecular dynamics of I37R-CFTR using an extended model of the phosphorylated, ATP-bound human CFTR identified an altered lasso motif conformation which results in an unfavourable strengthening of the interactions between the lasso motif, the regulatory (R) domain and the transmembrane domain two (TMD2). In conclusion, structural and functional characterisation of the I37R-CFTR mutation increases understanding of CFTR channel regulation and provides a potential pathway to access CFTR modulator treatments for individuals with CF caused by ultra-rare CFTR mutations.


2021 ◽  
Author(s):  
Gerald I Nwosu ◽  
Felicia Mermer ◽  
Carson Flamm ◽  
Sarah Poliquin ◽  
Wangzhen Shen ◽  
...  

We have previously studied the molecular mechanisms of solute carrier family 6 member 1 (SLC6A1) associated with a continuum of neurodevelopmental disorders, including various epilepsy syndromes, autism, and intellectual disability. Based on functional assays of variants in a large cohort with heterogenous clinical phenotypes, we conclude that partial or complete loss of GABA uptake function in the mutant GAT-1 is the primary etiology as identified in GABAA receptor mutation-mediated epilepsy and in cystic fibrosis. Importantly, we identified that there are common patterns of the mutant protein trafficking from biogenesis, oligomerization, glycosylation, and translocation to the cell membrane across variants with the conservation of this process across cell types. Conversely any approach to facilitate membrane trafficking would increase presence of the functional protein in the targeted destination in all involved cells. PBA is an FDA-approved drug for pediatric use and is orally bioavailable so it can be quickly translated to patient use. It has been demonstrated that PBA can correct protein misfolding, reduce ER stress, and attenuate unfolded protein response in neurodegenerative diseases, it has also showed promise in treatment of cystic fibrosis. The common cellular mechanisms shared by the mutant GAT-1 and the mutant cystic fibrosis transmembrane conductance regulator led us to test if PBA and other pharmaco-chaperones could be a potential treatment option for SLC6A1 mutations. We examined the impact of PBA and other small molecules in a library of variants and in cell and knockin mouse models. Because of the critical role of astrocytic GAT-1 deficit in seizures, we focused on astrocytes, and demonstrated that the existence of the mutant GAT-1 retained the wildtype GAT-1, suggesting aberrant protein oligomerization and trafficking caused by the mutant GAT-1. PBA increased GABA uptake in both mouse and human astrocytes bearing the mutations. Importantly, PBA increased GAT-1 expression and suppressed spike wave discharges (SWDS) in the heterozygous knockin mice. Although the detailed mechanisms of action for PBA are ambiguous, it is likely that PBA can facilitate the forward trafficking of the wildtype GAT-1 favoring over the mutant GAT-1, thus increasing GABA uptake. Since all patients with SLC6A1 mutations are heterozygous and carry one wildtype functional allele, this suggests a great opportunity for treatment development by leveraging the endogenous protein trafficking pathway to promote forward trafficking of the wildtype in combination with enhancing the disposal of the mutant allele as treatment mode. The study opens a novel avenue of treatment development for genetic epilepsy via drug repurposing.


2021 ◽  
pp. 1-6
Author(s):  
Xicheng Tao ◽  
Yueping Che ◽  
Chenxi Li ◽  
Wencong Ruan ◽  
Jialu Xu ◽  
...  

Recently, an increasing number of genes have been associated with global developmental delay (GDD) and intellectual disability (ID). The sorting nexin (SNX) protein family plays multiple roles in protein trafficking and intracellular signaling. SNXs have been reported to be associated with several disorders, including Alzheimer disease and Down syndrome. Despite the growing evidence of an association of SNXs with neurodegeneration, SNX13 deficiency has not been associated with GDD or ID. In this study, we present the case of a 4-year-old boy with brain dysplasia and GDD, including language delay, cognitive delay, and dyskinesia. Exome sequencing revealed a 1-bp homozygous deletion in <i>SNX13</i> (NM_015132.5: exon8: c.742_743del; p.Tyr248Leufs*20), which caused a frameshift and predicted early termination. Sanger sequencing confirmed that the variant was inherited from his parents respectively. Our findings associate <i>SNX13</i> variation with GDD for the first time and provide a new GDD candidate gene.


Sign in / Sign up

Export Citation Format

Share Document