transcript processing
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 3)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 139
Author(s):  
Mei Fu ◽  
Xiaona Lin ◽  
Yining Zhou ◽  
Chunmei Zhang ◽  
Bing Liu ◽  
...  

RNA editing is essential for compensating for defects or mutations in haploid organelle genomes and is regulated by numerous trans-factors. Pentatricopeptide repeat (PPR) proteins are the prime factors that are involved in RNA editing; however, many have not yet been identified. Here, we screened the plastid-targeted PLS-DYW subfamily of PPR proteins belonging to Arabidopsis thaliana and identified ORGANELLE TRANSCRIPT PROCESSING 970 (OTP970) as a key player in RNA editing in plastids. A loss-of-function otp970 mutant was impaired in RNA editing of ndhB transcripts at site 149 (ndhB-C149). RNA-immunoprecipitation analysis indicated that OTP970 was associated with the ndhB-C149 site. The complementation of the otp970 mutant with OTP970 lacking the DYW domain (OTP970∆DYW) failed to restore the RNA editing of ndhB-C149. ndhB gene encodes the B subunit of the NADH dehydrogenase-like (NDH) complex; however, neither NDH activity and stability nor NDH-PSI supercomplex formation were affected in otp970 mutant compared to the wild type, indicating that alteration in amino acid sequence is not necessary for NdhB function. Together, these results suggest that OTP970 is involved in the RNA editing of ndhB-C149 and that the DYW domain is essential for its function.


2022 ◽  
Author(s):  
Erica Werner ◽  
Avanti Gokhale ◽  
Molly Ackert ◽  
Chongchong Xu ◽  
Zhexing Wen ◽  
...  

Manganese exposure causes a parkinsonian disorder, manganism, which is viewed as a neurodegenerative disorder minimally related to Parkinson s disease. We tested this hypothesis asking if there is phenotypic and mechanistic overlap between two genetic models of these diseases. We targeted for study the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson gene PARK2. We performed comparative molecular systems studies and found that SLC30A10 and PARK2 mutations compromised the mitochondrial RNA granule as well as mitochondrial transcript processing. These shared RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 and DHX30, or pharmacological inhibition of mitochondrial transcription-translation were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that the downregulation of the mitochondrial RNA granule function is a protective mechanism for acute metal toxicity. We propose that initially adaptive mitochondrial dysfunction caused by manganese exposure, when protracted, causes neurodegeneration


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengmeng Kong ◽  
Yaozong Wu ◽  
Ziyuan Wang ◽  
Wantong Qu ◽  
Yixin Lan ◽  
...  

Chloroplast development involves the coordinated expression of both plastids- and nuclear-encoded genes in higher plants. However, the underlying mechanism still remains largely unknown. In this study, we isolated and characterized an Arabidopsis mutant with an albino lethality phenotype named RNA processing 8 (rp8). Genetic complementation analysis demonstrated that the gene AT4G37920 (RP8) was responsible for the mutated phenotype. The RP8 gene was strongly expressed in photosynthetic tissues at both transcription and translation protein levels. The RP8 protein is localized in the chloroplast and associated with the thylakoid. Disruption of the RP8 gene led to a defect in the accumulation of the rpoA mature transcript, which reduced the level of the RpoA protein, and affected the transcription of PEP-dependent genes. The abundance of the chloroplast rRNA, including 23S, 16S, 4.5S, and 5S rRNA, were reduced in the rp8 mutant, respectively, and the amounts of chloroplast ribosome proteins, such as, PRPS1(uS1c), PRPS5(uS5c), PRPL2 (uL2c), and PRPL4 (uL4c), were substantially decreased in the rp8 mutant, which indicated that knockout of RP8 seriously affected chloroplast translational machinery. Accordingly, the accumulation of photosynthetic proteins was seriously reduced. Taken together, these results indicate that the RP8 protein plays an important regulatory role in the rpoA transcript processing, which is required for the expression of chloroplast genes and chloroplast development in Arabidopsis.


2021 ◽  
Author(s):  
Minsoo Kim ◽  
John D Swenson ◽  
Fionn McLoughlin ◽  
Elizabeth Vierling

Background: Heat Shock Protein 101 (HSP101) in plants and orthologs in bacteria (Caseinolytic peptidase B, ClpB) and yeast (Hsp104) are essential for thermotolerance. To investigate molecular mechanisms of thermotolerance involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a semi-dominant, missense HSP101 allele, hot1-4 (A499T). Plants carrying the hot1-4 mutation are more heat-sensitive than an HSP101 null mutant (hot1-3), indicating the toxicity of hot1-4 allele. Results: We report that one suppressor (shot2, suppressor of hot1-4 2) has a temperature-sensitive, missense mutation (E170K) in the CstF77 (Cleavage stimulation factor 77) subunit of the polyadenylation complex, which is critical for 3' end maturation of pre-mRNA. RNA-Seq analysis of total RNA depleted of ribosomes reveals that heat treatment causes transcriptional readthrough events in shot2, specifically in highly heat-induced genes, including the toxic hot1-4 gene. In addition, failure of correct transcript processing leads to reduced accumulation of many HSP RNAs and proteins, suppressing heat sensitivity of the hot1-4 mutant, due to reduction of the toxic mutant HSP101 protein. Notably, the shot2 mutation makes plants more sensitive to heat stress in the HSP101 null (hot1-3) and wild-type backgrounds correlated with the reduced expression of other heat-inducible genes required for thermotolerance. Conclusions: Our study reveals the critical function of CstF77 for 3' end formation of mRNA during heat stress, as well as the dominant role of HSP101 in dictating the outcome of severe heat stress in plants.


2021 ◽  
Vol 22 (20) ◽  
pp. 11297
Author(s):  
Marine Guilcher ◽  
Arnaud Liehrmann ◽  
Chloé Seyman ◽  
Thomas Blein ◽  
Guillem Rigaill ◽  
...  

Plastid gene expression involves many post-transcriptional maturation steps resulting in a complex transcriptome composed of multiple isoforms. Although short-read RNA-Seq has considerably improved our understanding of the molecular mechanisms controlling these processes, it is unable to sequence full-length transcripts. This information is crucial, however, when it comes to understanding the interplay between the various steps of plastid gene expression. Here, we describe a protocol to study the plastid transcriptome using nanopore sequencing. In the leaf of Arabidopsis thaliana, with about 1.5 million strand-specific reads mapped to the chloroplast genome, we could recapitulate most of the complexity of the plastid transcriptome (polygenic transcripts, multiple isoforms associated with post-transcriptional processing) using virtual Northern blots. Even if the transcripts longer than about 2,500 nucleotides were missing, the study of the co-occurrence of editing and splicing events identified 42 pairs of events that were not occurring independently. This study also highlighted a preferential chronology of maturation events with splicing happening after most sites were edited.


Author(s):  
Marine Guilcher ◽  
Arnaud Liehrmann ◽  
Chloé Seyman ◽  
Thomas Blein ◽  
Guillem Rigaill ◽  
...  

Plastid gene expression involves many post-transcriptional maturation steps resulting in a complex transcriptome composed of multiple isoforms. Although short read RNA-seq has considerably improved our understanding of the molecular mechanisms controlling these processes, it is unable to sequence full-length transcripts. This information is however crucial when it comes to understand the interplay between the various steps of plastid gene expression. Here, the study of the Arabidopsis leaf plastid transcriptome using Nanopore sequencing showed that many splicing and editing events were not independent but co-occurring. For a given transcript, maturation events also appeared to be chronologically ordered with splicing happening after most sites are edited.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Verônica R. de Melo Costa ◽  
Julianus Pfeuffer ◽  
Annita Louloupi ◽  
Ulf A. V. Ørom ◽  
Rosario M. Piro

Abstract Background Introns are generally removed from primary transcripts to form mature RNA molecules in a post-transcriptional process called splicing. An efficient splicing of primary transcripts is an essential step in gene expression and its misregulation is related to numerous human diseases. Thus, to better understand the dynamics of this process and the perturbations that might be caused by aberrant transcript processing it is important to quantify splicing efficiency. Results Here, we introduce SPLICE-q, a fast and user-friendly Python tool for genome-wide SPLICing Efficiency quantification. It supports studies focusing on the implications of splicing efficiency in transcript processing dynamics. SPLICE-q uses aligned reads from strand-specific RNA-seq to quantify splicing efficiency for each intron individually and allows the user to select different levels of restrictiveness concerning the introns’ overlap with other genomic elements such as exons of other genes. We applied SPLICE-q to globally assess the dynamics of intron excision in yeast and human nascent RNA-seq. We also show its application using total RNA-seq from a patient-matched prostate cancer sample. Conclusions Our analyses illustrate that SPLICE-q is suitable to detect a progressive increase of splicing efficiency throughout a time course of nascent RNA-seq and it might be useful when it comes to understanding cancer progression beyond mere gene expression levels. SPLICE-q is available at: https://github.com/vrmelo/SPLICE-q


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 972
Author(s):  
Roberta Onesimo ◽  
Daniela Ricci ◽  
Cristiana Agazzi ◽  
Simona Leone ◽  
Maria Petrianni ◽  
...  

CHARGE syndrome (CS) is a rare genetic disease causing multiple anatomical defects and sensory impairment. Visual function is usually reported by caregivers and has never been described with a structured behavioral assessment. Our primary objective was to describe ocular abnormalities, visual function and genotype–ocular-phenotype correlation in CS. A prospective monocentric cohort study was performed on 14 children with CS carrying pathogenic CHD7 variants. All children underwent ophthalmological evaluation and structured behavioral assessment of visual function. The VISIOCHARGE questionnaire was administered to parents. Colobomas were present in 93% of patients. Genotype–phenotype correlation documented mitigated features in a subset of patients with intronic pathogenic variants predicted to affect transcript processing, and severe features in patients with frameshift/nonsense variants predicting protein truncation at the N-terminus. Abnormal visual function was present in all subjects, with different degrees of impairment. A significant correlation was found between visual function and age at assessment (p-value = 0.025). The present data are the first to characterize visual function in CS patients. They suggest that hypomorphic variants might be associated with milder features, and that visual function appears to be related to age. While studies with larger cohorts are required for confirmation, our data indicate that experience appears to influence everyday use of visual function more than ocular abnormalities do.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009645
Author(s):  
Yukiko Shimada ◽  
Sarah H. Carl ◽  
Merle Skribbe ◽  
Valentin Flury ◽  
Tahsin Kuzdere ◽  
...  

Small non-protein coding RNAs are involved in pathways that control the genome at the level of chromatin. In Schizosaccharomyces pombe, small interfering RNAs (siRNAs) are required for the faithful propagation of heterochromatin that is found at peri-centromeric repeats. In contrast to repetitive DNA, protein-coding genes are refractory to siRNA-mediated heterochromatin formation, unless siRNAs are expressed in mutant cells. Here we report the identification of 20 novel mutant alleles that enable de novo formation of heterochromatin at a euchromatic protein-coding gene by using trans-acting siRNAs as triggers. For example, a single amino acid substitution in the pre-mRNA cleavage factor Yth1 enables siRNAs to trigger silent chromatin formation with unparalleled efficiency. Our results are consistent with a kinetic nascent transcript processing model for the inhibition of small-RNA-directed de novo formation of heterochromatin and lay a foundation for further mechanistic dissection of cellular activities that counteract epigenetic gene silencing.


2021 ◽  
Author(s):  
Lara Lopez Escobar ◽  
Benjamin Hanisch ◽  
Clare Halliday ◽  
Samuel Dean ◽  
Jack Sunter ◽  
...  

Monoallelic expression of a single gene family member underpins a molecular “arms race” between many pathogens and their host, through host monoallelic immunoglobulin and pathogen monoallelic antigen expression. In Trypanosoma brucei, a single, abundant, variant surface glycoprotein (VSG) covers the entire surface of the bloodstream parasite and monoallelic VSG transcription underpins their archetypal example of antigenic variation. It is vital for pathogenicity, only occurring in mammalian infectious forms. Transcription of one VSG gene is achieved by RNA polymerase I (Pol I) in a singular nuclear structure: the expression site body (ESB). How monoallelic expression of the single VSG is achieved is incompletely understood and no specific ESB components are known. Here, using a protein localisation screen in bloodstream parasites, we discovered the first ESB-specific protein: ESB1. It is specific to VSG-expressing life cycle stages where it is necessary for VSG expression, and its overexpression activates inactive VSG promoters. This showed monoallelic VSG transcription requires a stage-specific activator. Furthermore, ESB1 is necessary for Pol I recruitment to the ESB, however transcript processing and inactive VSG gene exclusion ESB sub-domains do not require ESB1. This shows that the cellular solution for monoallelic transcription is a complex factory of functionally distinct and separably assembled sub-domains.


Sign in / Sign up

Export Citation Format

Share Document