scholarly journals Molecular structure and catalytic mechanism of fungal family G acidophilic xylanases

3 Biotech ◽  
2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Protyusha Dey ◽  
Amit Roy
Biochemistry ◽  
2005 ◽  
Vol 44 (35) ◽  
pp. 11730-11740 ◽  
Author(s):  
Isabel Nogués ◽  
Inmaculada Pérez-Dorado ◽  
Susana Frago ◽  
Cristian Bittel ◽  
Stephen G. Mayhew ◽  
...  

2019 ◽  
Vol 128 (06/07) ◽  
pp. 375-378 ◽  
Author(s):  
Clemens Steegborn ◽  
Ulrich Schweizer

AbstractDeiodinases catalyze the specific removal of iodine atoms from one of the two iodinated phenyl rings in iodothyronines. They thereby fine-regulate local thyroid hormone concentrations in organs or cells. The chemical reaction is unique in the sense that in metazoans the reductive elimination of iodide depends on the rare amino acid selenocysteine in the enzymes’ active centers. While there is no prokaryotic homologue of such deiodinases, the solution of the crystal structure of a catalytic domain of mouse deiodinase 3 has revealed that the ancient peroxiredoxin structure has been repurposed, and improved using selenocysteine, as a deiodinase during metazoan evolution. Likewise, many biochemical findings obtained over decades can now be interpreted in light of the molecular structure. Despite this leap in our understanding of deiodinase structure, there are still several open questions that need to be addressed in order to fully understand substrate binding, catalytic mechanism, and regulation of deiodinases. We surmise that these issues as well as differences between the three highly homologous isoenzymes must be understood in order to develop modulators of deiodinases that could be valuable in clinical use.


2005 ◽  
Vol 102 (49) ◽  
pp. 17606-17611 ◽  
Author(s):  
M. H. Kim ◽  
W.-C. Choi ◽  
H. O. Kang ◽  
J. S. Lee ◽  
B. S. Kang ◽  
...  

2004 ◽  
Vol 101 (10) ◽  
pp. 3364-3369 ◽  
Author(s):  
M. Fujinaga ◽  
M. M. Cherney ◽  
H. Oyama ◽  
K. Oda ◽  
M. N. G. James

Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


Sign in / Sign up

Export Citation Format

Share Document