active centers
Recently Published Documents


TOTAL DOCUMENTS

885
(FIVE YEARS 285)

H-INDEX

49
(FIVE YEARS 13)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueli Li ◽  
Zhonghua Xiang

AbstractThe atomic configurations of FeNx moieties are the key to affect the activity of oxygen rection reaction (ORR). However, the traditional synthesis relying on high-temperature pyrolysis towards combining sources of Fe, N, and C often results in the plurality of local environments for the FeNx sites. Unveiling the effect of carbon matrix adjacent to FeNx sites towards ORR activity is important but still is a great challenge due to inevitable connection of diverse N as well as random defects. Here, we report a proof-of-concept study on the evaluation of covalent-bonded carbon environment connected to FeN4 sites on their catalytic activity via pyrolysis-free approach. Basing on the closed π conjugated phthalocyanine-based intrinsic covalent organic polymers (COPs) with well-designed structures, we directly synthesized a series of atomically dispersed Fe-N-C catalysts with various pure carbon environments connected to the same FeN4 sites. Experiments combined with density functional theory demonstrates that the catalytic activities of these COPs materials appear a volcano plot with the increasement of delocalized π electrons in their carbon matrix. The delocalized π electrons changed anti-bonding d-state energy level of the single FeN4 moieties, hence tailored the adsorption between active centers and oxygen intermediates and altered the rate-determining step.


2022 ◽  
Author(s):  
Ning Gao ◽  
Chengying Ma ◽  
Damu Wu ◽  
Qian Chen

Abstract The AAA+ ATPase Drg1 is a ribosome assembly factor in yeast, and functions to release Rlp24, another assembly factor, from the pre-60S particle just exported from nucleus to initiate its further cytoplasmic maturation. Being a type II AAA+ protein with two ATPase domains (D1 and D2), its activity in ribosome assembly can be inhibited by a drug molecule diazaborine. In human, mutations of Drg1 homologue has been linked to a disease condition called epilepsy, hearing loss, and mental retardation syndrome. Although the general structure of Drg1 hexamer was recently reported, its complete structure and dynamic conformational rearrangements driven by ATP-hydrolysis are poorly understood. Here, we report a comprehensive structural characterization of Drg1 hexamers in different nucleotide-binding and benzo-diazaborine treated states. Our data show that Drg1 hexamers transits between two extreme conformations, characterized by a planar or helical arrangement of its six protomers. By forming covalent adducts with the ATP molecules in the active centers of both D1 and D2, benzo-diazaborine locks Drg1 hexamers in a more symmetric and non-productive conformation. In addition, we obtained the structure of a mutant Drg1 hexamer (Walker B mutations) with a polypeptide trapped in the central channel, representing a 3D snapshot of its functional, substrate-processing form. Conserved pore loops on the ATPase domains of Drg1 form a spiral staircase to interact with the substrate through a sequence-independent manner. These results suggest that Drg1, similar as Cdc48/p97, acts as a molecular unfoldase to remodel pre-60S particles, and benzo-diazaborine inhibits both the inter-protomer and inter-ring communication to disable the conformational cycling of Drg1 protomers required for the unfolding activity.


2022 ◽  
Author(s):  
Buthainah Ali Al-Timimi ◽  
Zahira Yaakob

The possibility of alleviation of methane and carbon dioxide levels in the atmosphere are of major global interest. One of the alternatives that attracts much scientific attention is their chemical utilization, especially because both of these gases are components of the biogas. Thus, the rapid and extensive shale gas development makes them abundant raw materials. The development of an effective catalytic process that could be scaled-up for industrial purposes remains a great challenge for catalysis. As well, understanding of the mechanisms of molecular activation and the reaction pathways over active centers on heterogeneous catalysts needs to be advanced. It has been shown that biogas is a very interesting source of renewable energy. Because of its elevated methane content, biogas has excellent potential, as reflected in its year-over-year rise in production. This is because its manufacturing promotes the use of organic waste, prevents uncontrolled dumping and minimizes atmospheric methane and carbon dioxide emissions. Moreover, its use as an energy source is in some cases an alternative to fossil fuels and can help to minimize energy dependence. Another aspect of interest is that it can be used in situ, allowing agro-livestock farms or small industrial plants to achieve energy self-sufficiency.


2021 ◽  
Vol 22 (4) ◽  
pp. 792-803
Author(s):  
Mariia Liaskovska ◽  
Tetiana Tatarchuk ◽  
Volodymyr Kotsyubynsky ◽  
Hanna Ersteniuk

The cobalt-zinc ferrites Zn1-xCoxFe2O4 (where x=0; 0.2; 0.4; 0.6; 0.8; 1.0) were obtained by green synthesis using Ginkgo Biloba extract as reductant and fuel. The cation distribution of the spinel ferrites has been investigated by means of X-ray diffraction and Mossbauer spectroscopy. The surface morphology and elemental composition were analyzed by SEM and EDS. The crystallite size decrease with increasing Co2+ content calculated from Scherrer equation and Williamson-Hall method. Adsorption properties of the spinel system were investigated using Congo Red (CR) dye as model pollutant. It is concluded that the adsorption of Congo red dye molecules can occur due to electrostatic and donor-acceptor interactions with the adsorbent surface containing various amount of active centers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Anping Wang ◽  
Wenxuan Quan ◽  
Heng Zhang

Catalysts play an important role in the preparation of biodiesel. It is of great significance to study catalysts with high efficiency, low cost, and easy preparation. Compared with the homogeneous catalyst system, the heterogeneous catalyst is easy to separate and has a better catalytic effect. In heterogeneous catalysts, supports and preparation methods have important effects on the dispersion of active centers and the overall performance of catalysts. However, the supports of existing solid catalysts have defects in porosity, structural uniformity, stability, and specific surface area, and the preparation methods cannot stabilize covalent bonds or ionic bonds to bind catalytic sites. Considering the activity, preparation method, and cost of the catalyst, biomass-based catalyst is the best choice, but the specific surface area of the biomass-based catalyst is relatively low, the distribution of active centers is uneven, and it is easy to lose. Therefore, the hybrid carrier of biomass-based catalyst and other materials can not only improve the specific surface area but also make the distribution of active centers uniform and the catalytic activity better. Based on this, we summarized the application of chitosan hybrid material catalysts in biodiesel. The preparation, advantages and disadvantages, reaction conditions, and so on of chitosan-based catalysts were mainly concerned. At the same time, exploring the effects of different types of chitosan-based catalysts on the preparation of biodiesel and exploring the process technology with high efficiency and low consumption is the focus of this paper.


2021 ◽  
Author(s):  
Shehdeh Jodeh ◽  
Ahlam Jaber ◽  
Ghadir Hanbali ◽  
Younes Massad ◽  
Zaki S. Safi ◽  
...  

Abstract BackgroundHuman and veterinary antibiotics are typically discharged as parent chemicals in urine or feces and are known to be released into the environment via wastewater treatment plants (WWTPs). Several research investigations have recently been conducted on the removal and bioremediation of pharmaceutical and personal care products (PPCPs) disposed in wastewater. ResultsSiNP-Cu, a chelating matrix, was produced by delaying and slowing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel from functionalized with 3-aminopropyltrimethoxysilane. The prepared sorbent material was characterized using several techniques including BET surface area, FT-IR spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), and nitrogen adsorption-desorption isotherm. The pseudo-second-order model provided the best correlation due to the big match between the experimental and theoretical of different adsorption coefficients. The Langmuir and Freundlich adsorption models were used and the study showed better match with Fruendlich model. The removal capacity was depending on pH and increased by increasing pH The adsorbent demonstrated a high percentage removal of TMP, reaching more than 94 %. The sample was simply regenerated by soaking it for a few minutes in 1N HCl and drying it. The sorbent was repeated five times with no discernible decrease in removal capacity. Thermodynamic study also showed endothermic, increasing randomness and not spontaneous in nature. The findings of the DFT B3LYP/6-31+g (d,p) local reactivity descriptors revealed that nitrogen atoms and p-electrons of the benzene and pyrimidine rings in the TMP are responsible for the adsorption process with the SiNP surface. The negative values of the adsorption energies obtained by molecular dynamic simulation indicated the spontaneity of the adsorption process. ConclusionThe global reactivity indics prove that TMP is stable and it can be removed from wastewater using SiNP surface. The results of the local reactivity indices concluded that the active centers for the adsorption process are the nitrogen atoms and the p-electrons of the pyrimidine and benzene rings. Furthermore, the positive value of the maximum charge transfer number (DN) proves that TMP has a great tendency to donate electrons to SiNP surface during the process of adsorption.


Author(s):  
Nina A. Dyakova ◽  

The Voronezh region is traditionally the most important area of crop production and agriculture. The purpose of the research was to study the contamination with heavy metals of medicinal plant raw materials of the Voronezh region using the example of the roots of ordinary burdock, prepared in urbo- and agro-ecosystems, which have various anthropogenic effects on themselves. The accumulation of heavy metals (lead, mercury, cadmium, nickel, copper, zinc, cobalt, chromium) and arsenic in 51 samples of raw materials was studied. By comparing the heavy metal content in the upper soil layers of the region and the content of these elements in the roots of the bladder, it can be assumed that there are significant physiological barriers to the accumulation of ecotoxicants in the roots of the bladder, which is especially noticeable for elements such as lead, mercury, arsenic, cadmium, cobalt and chromium. At the same time, this type of medicinal vegetal raw material is able to selectively concentrate some heavy metals included in the active centers of enzyme systems (copper and zinc). Thus, for an ordinary bladder under conditions of anthropogenic load, an edaphotype is formed, which is as a result of selection in conditions of anthropogenic pollution of the external environment and the manifestation of adaptation to these conditions.


Sign in / Sign up

Export Citation Format

Share Document