scholarly journals Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response

3 Biotech ◽  
2018 ◽  
Vol 8 (12) ◽  
Author(s):  
Neha Lohia ◽  
Manoj Baranwal
2013 ◽  
Vol 43 (3) ◽  
pp. 641-648 ◽  
Author(s):  
Francesca Buricchi ◽  
Monia Bardelli ◽  
Carmine Malzone ◽  
Barbara Capecchi ◽  
Uwe Nicolay ◽  
...  

2014 ◽  
Vol 21 (5) ◽  
pp. 737-746 ◽  
Author(s):  
Christopher D. O'Donnell ◽  
Amber Wright ◽  
Leatrice Vogel ◽  
Kobporn Boonnak ◽  
John J. Treanor ◽  
...  

ABSTRACTThe hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.


Virology ◽  
2010 ◽  
Vol 396 (2) ◽  
pp. 178-188 ◽  
Author(s):  
Wenxin Wu ◽  
J. Leland Booth ◽  
Elizabeth S. Duggan ◽  
Shuhua Wu ◽  
Krupa B. Patel ◽  
...  

2011 ◽  
Vol 57 (7) ◽  
pp. 1154-1158 ◽  
Author(s):  
Ting-Yu Yen ◽  
Shiann-Tarng Jou ◽  
Yung-Li Yang ◽  
Hsiu-Hao Chang ◽  
Meng-Yao Lu ◽  
...  

2012 ◽  
Vol 87 (3) ◽  
pp. 1400-1410 ◽  
Author(s):  
Donald M. Carter ◽  
Chalise E. Bloom ◽  
Eduardo J. M. Nascimento ◽  
Ernesto T. A. Marques ◽  
Jodi K. Craigo ◽  
...  

ABSTRACTIndividuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.


2011 ◽  
Vol 31 (5) ◽  
pp. 900-912 ◽  
Author(s):  
Gillian M. Air ◽  
JingQi Feng ◽  
Tao Chen ◽  
Michelle L. Joachims ◽  
Judith A. James ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document