Implantable thin-film porous microelectrode array (P-MEA) for electrical stimulation of engineered cardiac tissues

2015 ◽  
Vol 9 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Hiren V. Trada ◽  
Venkat Vendra ◽  
Joseph P. Tinney ◽  
Fangping Yuan ◽  
Douglas J. Jackson ◽  
...  
1996 ◽  
Vol 115 (2) ◽  
pp. P94-P95
Author(s):  
Derek A. Jones ◽  
H. Alexander Arts ◽  
Steven M. Bierer ◽  
David J Anderson

2020 ◽  
Vol 2 (4) ◽  
pp. 391-398
Author(s):  
Damián Hernández ◽  
Rodney Millard ◽  
Anne M. Kong ◽  
Owen Burns ◽  
Priyadharshini Sivakumaran ◽  
...  

2015 ◽  
Vol 1795 ◽  
pp. 13-18
Author(s):  
Alberto Bonisoli ◽  
Attilio Marino ◽  
Gianni Ciofani ◽  
Francesco Greco

ABSTRACTWe report on the results of culturing SH-SY5Y neuron-like cells on PEDOT:PSS wrinkled surfaces fabricated by thermally-induced shrinking of commercial polystyrene sheets. Such smart biointerfaces combine the functional properties of conducting polymers with the topographic patterning at the micro- and sub-microscale, as a result of surface wrinkling. By imposing mechanical constraints during shrinking, anisotropic topographic features are formed, with a spatial periodicity in the range 0.7 - 1.2 μm, tunable by varying the thickness of the PEDOT:PSS thin film. The effectiveness of wrinkled surfaces in enhancing and orientating the outgrowth of neurites is demonstrated by a 42% increase in length and by the 85% of neurites aligned along wrinkles direction (angle 0 < θ < 15°), after 5 days of differentiation. Furthermore, the conductive properties of the PEDOT:PSS film are retained after the surface wrinkling, opening the way for the exploitation of these smart biointerfaces for the electrical stimulation of cells.


2020 ◽  
Author(s):  
Denise Oswalt ◽  
Projag Datta ◽  
Neil Talbot ◽  
Zaman Mirzadeh ◽  
Bradley Greger

Prostheses that can restore limited vision in the profoundly blind have been under investigation for several decades. Studies using epicortical macroelectrodes and intracortical microelectrodes have validated that electrical stimulation of primary visual cortical can serve as the basis for a vision prosthesis. However, neither of these approaches has resulted in a clinically viable vision prosthesis. Epicortical macroelectrodes required high levels of electrical current to evoke visual percepts, while intracortical microelectrodes faced challenges with longevity and stability. We hypothesized that epicortical microelectrodes could evoke visual percepts at lower currents than macroelectrodes and provide improved longevity and stability compared with intracortical microelectrodes. To test this hypotheses we implanted epicortical microelectrode arrays over the primary visual cortex of a nonhuman primate. Electrical stimulation via this array was used to evaluate the ability of epicortical microstimulation to evoke differentiable visual percepts. Visual percepts were evoked using the epicortical microelectrode array, and at electrical currents notably lower than those required to evoke visual percepts on macroelectrode arrays. The electrical current thresholds for evoking visual percepts on the epicortical microelectrode array were consistent across multiple array implants and over several months. Normal vision of light perception was not impaired by multiple array implants or chronic electrical stimulation, demonstrating that no gross visual deficit resulted from the experiments. We specifically demonstrate that epicortical microelectrode interfaces can serve as the basis for a vision prosthesis and more generally may provide an approach to evoking perception in multiple sensory modalities.


2022 ◽  
Vol 17 (1) ◽  
pp. 011001
Author(s):  
Rubens Araujo da Silva ◽  
Ruikang Xue ◽  
Susana Inés Córdoba de Torresi ◽  
Sarah Cartmell

Sign in / Sign up

Export Citation Format

Share Document