Learning from Nature: Biologically Inspired Robot Navigation and SLAM—A Review

2010 ◽  
Vol 24 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Niko Sünderhauf ◽  
Peter Protzel
Robotica ◽  
2009 ◽  
Vol 28 (5) ◽  
pp. 637-648 ◽  
Author(s):  
Hamid Teimoori ◽  
Andrey V. Savkin

SUMMARYThe problem of wheeled mobile robot (WMR) navigation toward an unknown target in a cluttered environment has been considered. The biologically inspired navigation algorithm is the equiangular navigation guidance (ENG) law combined with a local obstacle avoidance technique. The collision avoidance technique uses a system of active sensors which provides the necessary information about obstacles in the vicinity of the robot. In order for the robot to avoid collision and bypass the enroute obstacles, the angle between the instantaneous moving direction of the robot and a reference point on the surface of the obstacle is kept constant. The performance of the navigation strategy is confirmed with computer simulations and experiments with ActivMedia Pioneer 3-DX wheeled robot.


Author(s):  
Veljko Potkonjak ◽  
Miomir Vukobratovic ◽  
Kalman Babkovic ◽  
Branislav Borovac

This chapter relates biomechanics to robotics. The mathematical models are derived to cover the kinematics and dynamics of virtually any motion of a human or a humanoid robot. Benefits for humanoid robots are seen in fully dynamic control and a general simulator for the purpose of system designing and motion planning. Biomechanics in sports and medicine can use these as a tool for mathematical analysis of motion and disorders. Better results in sports and improved diagnostics are foreseen. This work is a step towards the biologically-inspired robot control needed for a diversity of tasks expected in humanoids, and robotic assistive devices helping people to overcome disabilities or augment their physical potentials. This text deals mainly with examples coming from sports in order to justify this aspect of research.


Author(s):  
M. Saleiro ◽  
K. Terzić ◽  
D. Lobato ◽  
J. M. F. Rodrigues ◽  
J. M. H. du Buf

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. O. Afolayan ◽  
D. S. Yawas ◽  
C. O. Folayan ◽  
S. Y. Aku

A biologically inspired robot in the form of fish (mackerel) model using rubber (as the biomimetic material) for its hyper-redundant joint is presented in this paper. Computerized simulation of the most critical part of the model (the peduncle) shows that the rubber joints will be able to take up the stress that will be created. Furthermore, the frequency-induced softening of the rubber used was found to be critical if the joints are going to oscillate at frequency above 25 Hz. The robotic fish was able to attain a speed of 0.985 m/s while the tail beats at a maximum of 1.7 Hz when tested inside water. Furthermore, a minimum turning radius of 0.8 m (approximately 2 times the fish body length) was achieved.


Sign in / Sign up

Export Citation Format

Share Document