redundant robot
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 77)

H-INDEX

31
(FIVE YEARS 6)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Jun Dai ◽  
Yi Zhang ◽  
Hua Deng

Existing hybrid force/position control algorithms mostly explicitly contain a dynamic model. Moreover, force and position controllers will be switched frequently. To solve the above problems, a novel voltage-based weighted hybrid force/position control algorithm is proposed for redundant robot manipulators. Firstly, mapping between voltage and terminal position and orientation is established so that the designed controller can be simplified by adopting the motor current as the feedback to replace the tedious calculation of the dynamic model. Secondly, a voltage-based weighted hybrid force/position control algorithm is proposed to eliminate the selection matrix. Force and position control laws are summed directly through a weighted way to avoid the problems of space decomposition and switching. Thirdly, the stability is proven using Lyapunov stability theory, then the selection method for weighted coefficient is provided. Fourthly, comparative simulations are performed. Results show that the proposed algorithm is suitable for impedance control and hybrid force/position control and can compensate for their deficiencies. Lastly, the transport experiment in the YZ plane is conducted. Results show that position and force accuracies in the Y- and Z-axis directions are 3.489 × 10−4 and 7.313 × 10−4 m and 1.238 × 10−1 and 1.997 × 10−1 N, respectively. Accordingly, it can effectively improve the operation capability and control accuracy.


2021 ◽  
Vol 12 (2) ◽  
pp. 1017-1026
Author(s):  
Lei Zhang ◽  
Guangyao Ouyang ◽  
Zhaocai Du

Abstract. The mapping relationship between the driving space and the workspace is essential for the precise control of a cable-driven hyper-redundant robot. For a hyper-redundant robot driven by cables, the relationships between the driving space and the joint space and between the joint space and the workspace were studied. A joint-decoupling kinematics analysis method was proposed and a kinematic analysis was presented. Based on the analysis of the coupling effect between the cable-driving space and the joint space, a decoupling analysis of the whole cable-driving space and joint space was conducted to eliminate the coupling effect between the joints, and the mapping relationship between the driving cables and the joint angles was obtained. Given the initial and target orientations of the hyper-redundant robot, the variation law for each joint angle was obtained using quintic polynomial trajectory planning and the pseudo-inverse Jacobian matrix, and then the driving cable variation law could be solved. Based on the results, the joint angle changes and the workspace trajectories were solved in turn. By comparing with the initial trajectory, the simulation results verified the appropriateness of the decoupling analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Long Huang ◽  
Bei Liu ◽  
Lairong Yin ◽  
Peng Zeng ◽  
Yuanhan Yang

In most of the prior designs of conventional cable-driven hyper-redundant robots, the multiple degree-of-freedom (DOF) bending motion usually has bending coupling effects. It means that the rotation output of each DOF is controlled by multiple pairs of cable inputs. The bending coupling effect will increase the complexity of the driving mechanism and the risk of slack in the driving cables. To address these problems, a novel 2-DOF decoupled joint is proposed by adjusting the axes distribution of the universal joints. Based on the decoupled joint, a 4-DOF hyper-redundant robot with two segments is developed. The kinematic model of the robot is established, and the workspace is analyzed. To simplify the driving mechanism, a kinematic fitting approach is presented for both proximal and distal segments and the mapping between the actuator space and the joint space is significantly simplified. It also leads to the simplification of the driving mechanism and the control system. Furthermore, the cable-driven hyper-redundant robot prototype with multiple decoupled joints is established. The experiments on the robot prototype verify the advantages of the design.


2021 ◽  
pp. 1-13
Author(s):  
Paolo Guardiani ◽  
Daniele Ludovico ◽  
Alessandro Pistone ◽  
Haider Abidi ◽  
Isiah Zaplana ◽  
...  

Abstract Cable-driven hyper-redundant robots have been adopted in many fields for accessing harsh and confined environments that maybe inaccessible or dangerous for humans. The cable actuation strategy makes the robot hardware safer and increases the robot payload reducing its weight. In this paper, a novel design of a fully actuated cable-driven hyper-redundant robot has been proposed. This solution is a pulleyless design that decreases the mechanical complexity, allowing to reduce the robot arm diameter and avoid tension losses on the cables during the motion. Three different joint designs have been taken into account and experiments have been carried to study their performances. The kinematics for n-joint robot has been formulated and a cable routing optimization method based on genetic algorithm have been proposed and applied to a five-joints robot.


Author(s):  
Ricardo V. Godoy ◽  
Tharik J. S. Reis ◽  
Gustavo J. G. Lahr ◽  
Paulo H. Polegato ◽  
Marcelo Becker ◽  
...  

Author(s):  
Yisoo Lee ◽  
Nikos Tsagarakis ◽  
Jinoh Lee

AbstractThis paper analyzes operational space dynamics for redundant robots with un-actuated joints and reveals their highly nonlinear dynamic impacts on operational space control (OSC) tasks. Unlike conventional OSC approaches that partly address the under-actuated system by introducing rigid grasping or contact constraints, we deal with the problem even without such physical constraints which have been overlooked, yet it includes a wide range of applications such as free-floating robots and manipulators with passive joints or unwanted actuation failure. In addition, as an intuitive application example of the drawn result, an OSC is formulated as an optimization problem to alleviate the dynamics disturbance stemmed from the un-actuated joints and to satisfy other inequality constraints. The dynamic analysis and the proposed control method are verified by a number of numerical simulations as well as physical experiments with a 7-degrees-of-freedom robotic arm. In particular, we consider joint actuation failure scenarios that can be occurred at certain joints of a torque-controlled robot and practical case studies are performed with an actual redundant robot arm.


Sign in / Sign up

Export Citation Format

Share Document