Inertial proximal algorithm for difference of two maximal monotone operators

2016 ◽  
Vol 47 (1) ◽  
pp. 1-8
Author(s):  
M. Alimohammady ◽  
M. Ramazannejad
2015 ◽  
Vol 23 (2) ◽  
pp. 133-146
Author(s):  
Hadi Khatibzadeh ◽  
Sajad Ranjbar

Abstract In this paper, convergence of the sequence generated by the inexact form of the inertial proximal algorithm is studied. This algorithm which is obtained by the discretization of a nonlinear oscillator with damping dynamical system, has been introduced by Alvarez and Attouch (2001) and Jules and Maingé (2002) for the approximation of a zero of a maximal monotone operator. We establish weak and strong convergence results for the inexact inertial proximal algorithm with and without the summability assumption on errors, under different conditions on parameters. Our theorems extend the results on the inertial proximal algorithm established by Alvarez and Attouch (2001) and rules and Maingé (2002) as well as the results on the standard proximal point algorithm established by Brézis and Lions (1978), Lions (1978), Djafari Rouhani and Khatibzadeh (2008) and Khatibzadeh (2012). We also answer questions of Alvarez and Attouch (2001).


2001 ◽  
Vol 25 (4) ◽  
pp. 273-287 ◽  
Author(s):  
A. Addou ◽  
B. Mermri

We are interested in constructing a topological degree for operators of the formF=L+A+S, whereLis a linear densely defined maximal monotone map,Ais a bounded maximal monotone operators, andSis a bounded demicontinuous map of class(S+)with respect to the domain ofL. By means of this topological degree we prove an existence result that will be applied to give a new formulation of a parabolic variational inequality problem.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
Jérôme Bastien ◽  
Claude-Henri Lamarque

A chain sliding on a fixed support, made out of some elementary rheological models (dry friction element and linear spring) can be covered by the existence and uniqueness theory for maximal monotone operators. Several behavior from quasistatic to dynamical are investigated. Moreover, classical results of numerical analysis allow to use a numerical implicit Euler scheme.


Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


2006 ◽  
Vol 14 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Andrei Verona ◽  
Maria Elena Verona

Sign in / Sign up

Export Citation Format

Share Document