Novel Organic/Inorganic Hybrid Star Polymer Surface-Crosslinked with Polyhedral Oligomeric Silsesquioxane

2019 ◽  
Vol 28 (2) ◽  
pp. 152-158 ◽  
Author(s):  
Jingyan Zhang ◽  
Dong Si ◽  
Shifeng Wang ◽  
Hao Liu ◽  
Xiaoming Chen ◽  
...  
Soft Matter ◽  
2019 ◽  
Vol 15 (47) ◽  
pp. 9727-9732 ◽  
Author(s):  
Guanzhou Luo ◽  
Li Wang ◽  
Xinying Li ◽  
Kai Yang ◽  
Yongle Luo ◽  
...  

A facile method that combines alkali-assisted oxidation and –SH chelation with a click chemistry reaction was employed to create an F-POSS polymer surface (fluorinated octavinyl polyhedral oligomeric silsesquioxane polymer)-based Cu mesh (F-POSS-OM).


2004 ◽  
Vol 851 ◽  
Author(s):  
Sandra J. Tomczak ◽  
Darrell Marchant ◽  
Steve Svejda ◽  
Timothy K. Minton ◽  
Amy L. Brunsvold ◽  
...  

ABSTRACTKapton polyimide (PI) is widely used on the exterior of spacecraft as a thermal insulator. Atomic oxygen (AO) in lower earth orbit (LEO) causes severe degradation in Kapton resulting in reduced spacecraft lifetimes. One solution is to coat the polymer surface with SiO2 since this coating is known to impart remarkable oxidation resistance. Imperfections in the SiO2 application process and micrometeoroid / debris impact in orbit damage the SiO2 coating, leading to erosion of Kapton.A self passivating, self healing silica layer protecting underlying Kapton upon exposure to AO may result from the nanodispersion of silicon and oxygen within the polymer matrix. Polyhedral oligomeric silsesquioxane (POSS) is composed of an inorganic cage structure with a 2:3 Si:O ratio surrounded by tailorable organic groups and is a possible delivery system for nanodispersed silica. A POSS dianiline was copolymerized with pyromellitic dianhydride and 4, 4′-oxydianiline resulting in POSS Kapton Polyimide. The glass transition temperature (Tg) of 5 to 25 weight % POSS Polyimide was determined to be slightly lower, 5 – 10 %, than that of unmodified polyimides (414 °C). Furthermore the room temperature modulus of polyimide is unaffected by POSS, and the modulus at temperatures greater than the Tg of the polyimide is doubled by the incorporation of 20 wt % POSS.To simulate LEO conditions, POSS PI films underwent exposure to a hyperthermal O-atom beam. Surface analysis of exposed and unexposed films conducted with X-ray photoelectron spectroscopy, atomic force microscopy, and surface profilometry support the formation of a SiO2 self healing passivation layer upon AO exposure. This is exemplified by erosion rates of 10 and 20 weight % POSS PI samples which were 3.7 and 0.98 percent, respectively, of the erosion rate for Kapton H at a fluence of 8.5 × 1020 O atoms cm-2. This data corresponds to an erosion yield for 10 wt % POSS PI of 4.8 % of Kapton H. In a separate exposure, at a fluence of 7.33 × 1020 O atoms cm-2, 25 wt % POSS Polyimide showed the erosion yield of about 1.1 % of that of Kapton H. Also, recently at a lower fluence of 2.03 × 1020 O atoms cm-2, in going from 20 to 25 wt % POSS PI the erosion was decreased by a factor of 2 with an erosion yield too minor to be measured for 25 wt % POSS PI.


2018 ◽  
Vol 5 (10) ◽  
pp. 2678-2678 ◽  
Author(s):  
Rajendran Prabu ◽  
Karthik Peramaiah ◽  
Nallasamy Palanisami ◽  
Paolo P. Pescarmona ◽  
Bernaurdshaw Neppolian ◽  
...  

Correction for ‘Non-covalent polyhedral oligomeric silsesquioxane-polyoxometalates as inorganic–organic–inorganic hybrid materials for visible-light photocatalytic splitting of water’ by Rajendran Prabu et al., Inorg. Chem. Front., 2018, DOI: 10.1039/c8qi00449h.


2019 ◽  
Vol 43 (3-4) ◽  
pp. 144-148
Author(s):  
Ping Tang ◽  
Kai Xiang ◽  
Huijie Wei ◽  
Shuhong Li ◽  
Caihong Xu

Under Karstedt’s catalyst, an organic–inorganic hybrid fluorescent nano-molecular dendrimer has been synthesized by grafting silafluorene units onto the polyhedral oligomeric silsesquioxane core through hydrosilylation reaction. The new hybrid molecule exhibits high solid fluorescence quantum efficiency because of the nano-size and large steric hindrance of the polyhedral oligomeric silsesquioxane core. Thermogravimetric analysis shows that the thermal stability of the target compound is effectively improved by the presence of polyhedral oligomeric silsesquioxane.


Sign in / Sign up

Export Citation Format

Share Document