hybrid nanocomposites
Recently Published Documents


TOTAL DOCUMENTS

1289
(FIVE YEARS 464)

H-INDEX

62
(FIVE YEARS 13)

2022 ◽  
Vol 189 (2) ◽  
Author(s):  
Silvia Dortez ◽  
Tania Sierra ◽  
Miguel Á. Álvarez-Sánchez ◽  
José M. González-Domínguez ◽  
Ana M. Benito ◽  
...  

Abstract Two cellulose nanocrystals/single-walled carbon nanotube (CNC/SW) hybrids, using two cellulose polymorphs, were evaluated as electrochemical transducers: CNC type I (CNC-I/SW) and CNC type II (CNC-II/SW). They were synthesized and fully characterized, and their analytical performance as electrochemical sensors was carefully studied. In comparison with SWCNT-based and screen-printed carbon electrodes, CNC/SW sensors showed superior electroanalytical performance in terms of sensitivity and selectivity, not only in the detection of small metabolites (uric acid, dopamine, and tyrosine) but also in the detection of complex glycoproteins (alpha-1-acid glycoprotein (AGP)). More importantly, CNC-II/SW exhibited 20 times higher sensitivity than CNC-I/SW for AGP determination, yielding a LOD of 7 mg L−1.These results demonstrate the critical role played by nanocellulose polymorphism in the electrochemical performance of CNC/SW hybrid materials, opening new directions in the electrochemical sensing of these complex molecules. In general, these high-active-surface hybrids smartly exploited the preserved non-oxidized SW conductivity with the high aqueous dispersibility of the CNC, avoiding the use of organic solvents or the incorporation of toxic surfactants during their processing, making the CNC/SW hybrids promising nanomaterials for electrochemical detection following greener approaches. Graphical abstract


Silicon ◽  
2022 ◽  
Author(s):  
Abdullah Hasan Karabacak ◽  
Aykut Çanakçı ◽  
Fatih Erdemir ◽  
Serdar Özkaya ◽  
Müslim Çelebi

2021 ◽  
Vol 21 (4) ◽  
pp. 302-319
Author(s):  
Mahdi M. S. Shareef ◽  
Ahmed Naif Al-Khazraji ◽  
Samir Ali Amin

In this paper, functionally graded polymer hybrid nanocomposites have been produced by silica (SiO2) nanoparticles and alumina (Al2O3) nanoparticles distributed in a matrix of epoxy during the ultra-sonication via hand lay-up method. The variation in nanoparticles volume fraction (Vf.) has been given in the thickness direction for reaching the gradation. Each layer has a thickness of 1.2 mm through various concentrations of nanoparticles and is sequentially cast in acrylic moulds to fabricate the graded composite sheet with a 6 mm thickness. To fabricate the functionally graded layers, various concentrations of different nanoparticles (1.5% SiO2, 1% SiO2, epoxy, 2% Al2O3 and 3% Al2O3) have been used for tensile and compressive testing each isotropic layer of functionally graded material (FGM). The mechanical property that was studied for pure epoxy, isotropic and FGM was the flexural resistance. The flexural properties of FGM, isotropic nanocomposite (1% SiO2 + 2% Al2O3) and pristine epoxy, for evaluating their mechanical properties, including flexural stress-strain criteria and flexural Young's modulus, were determined via a Three-point bending test, with loading from the side of silica and alumina for the hybrid-FGM and at one side for the isotropic hybrid nanocomposite and pristine epoxy. The mechanical properties (tensile and compression) and the density of every layer were obtained for the epoxy resin and nanocomposites. They can benefit from the Finite Element Analysis (FEA) of the Three-point bending test via the Design Modeler (ANSYS workbench). The results of experiments were confirmed via building a detailed 3D FE model. Also, the advanced deformation results from the FE model were found in good agreement with the experimental outcomes.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 70
Author(s):  
Panangattukara Prabhakaran Praveen Kumar ◽  
Dong-Kwon Lim

Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.


Author(s):  
Илья Евгеньевич Глазов ◽  
Валентина Константиновна Крутько ◽  
Роман Алексеевич Власов ◽  
Ольга Николаевна Мусская ◽  
Людмила Викторовна Кульбицкая ◽  
...  

Синтезированы гибридные нанокомпозиты на основе гидроксиапатита и аутофибрина в форме фибринового сгустка либо цитратной плазмы путем осаждения при pH 9. «Мягкие» условия осаждения и быстрое выделение нанокомпозитов способствовали сохранению биополимерной матрицы аутофибрина. Дестабилизация дополнительной фазы аморфного фосфата кальция с образованием стехиометрического гидроксиапатита обусловлена влиянием макромолекул фибрина. Формирование кальцийдефицитного гидроксиапатита с x« 0,1 и Ca / P 1,65 происходило в среде цитратной плазмы, который после 800 °С превращался в смесь гидроксиапатит / 3 -трикальцийфосфат. Синтез композитов на основе биомиметического апатита осуществляли при добавлении 30 об.% модельного раствора Simulated Body Fluid (SBF). Влияние ионов Mg, CO~, входящих в состав SBF, способствовало стабилизации аморфного фосфата кальция и образованию карбонатзамещенного гидроксиапатита, устойчивого к термическим превращениям до 800°С. Совокупное влияние аутофибрина и ионов введенного SBF позволило управлять составом минеральной составляющей гибридных нанокомпозитов без разрушения биополимерной матрицы. Hybrid composites based on hydroxyapatite and autofibrin were synthesized by precipitation in a medium with pH = 9. Soft precipitation conditions and rapid isolation of the composite precipitates favored preservation of a biopolymer matrix of autofibrin. An effect of fibrin macromolecules contributed to destabilization of the amorphous calcium phosphate phase and formation of stoichiometric hydroxyapatite. The medium of the citrated plasma stimulated precipitation of calcium-deficient hydroxyapatite with x « 0,1 and the Ca / P ration of 1,65 which transformed into the mixture of hydroxyapatite / 3 -tricalcium phosphate at 800 °С. Biomimetic apatite composites were synthesized with an addition of 30 vol. % of a Simulated Body Fluid (SBF) model solution. The effect of Mg, CO~ ions of SBF promoted the stabilization of amorphous calcium phosphate and formation of carbonated hydroxyapatite that exhibited thermal stability up to 800 °С. The cummulative effect of autofibrin and ions of induced SBF provided controlling composition of the mineral part of hybrid nanocomposites without disruption of an autofibrin matrix.


Author(s):  
Hoai Linh Pham ◽  
Chung Do Chung ◽  
Mai Oanh Thi Le ◽  
Khien Van Nguyen ◽  
Bach Ngoc Ta ◽  
...  

Abstract In this study, we developed a green and easy to scale up approach for producing Au/g-C3N4 (Au/GCN) hybrid plasmonic photocatalyst without using the chemical reducing agents via the growing of Au nanoparticles (Au NPs) on the surface of g-C3N4 nanosheets under the photo-reduction of UV-radiation. Different characterization techniques were conducted for investigating the structure, morphology, surface chemistry and optical properties of the as-prepared catalysts. The SEM image shows that the homogeneous Au NPs anchored on the surface of the g-C3N4 nanosheet increased with the UV illumination time. The XPS results prove the coexistence of g-C3N4 nanosheets with heptazine heterocyclic ring (C6N7) units and Au nanoparticles in the Au/GCN. The photoluminescence intensity (PL) decreased sharply with the time of UV irradiation, indicating that the recombination rate of photogenerated electron-hole recombination decreased. The photocatalytic activity of the hybrid catalysts was evaluated by degrading rhodamine B under simulated sunlight irradiation. The results show that the Au/GCN photocatalyst exhibits superior sunlight photocatalytic activity than that of bare g-C3N4. The 6h-irradiated fabricating sample exhibited the strongest photocatalytic activity, completely decomposing the 10 ppm RhB in 30 minutes of irradiation. This report can provide the design of a simple and green synthesis method for the highly active Au/g-C3N4 photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document