Review of the Book Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine by Bibhas Charkaborty and Erica E. M. Moodie

2015 ◽  
Vol 20 (3) ◽  
pp. 433-434
Author(s):  
Hyonggin An
2020 ◽  
Vol 7 (1) ◽  
pp. 177-208 ◽  
Author(s):  
Stephen W. Raudenbush ◽  
Daniel Schwartz

Education research has experienced a methodological renaissance over the past two decades, with a new focus on large-scale randomized experiments. This wave of experiments has made education research an even more exciting area for statisticians, unearthing many lessons and challenges in experimental design, causal inference, and statistics more broadly. Importantly, educational research and practice almost always occur in a multilevel setting, which makes the statistics relevant to other fields with this structure, including social policy, health services research, and clinical trials in medicine. In this article we first briefly review the history that led to this new era in education research and describe the design features that dominate the modern large-scale educational experiments. We then highlight some of the key statistical challenges in this area, including endogeneity of design, heterogeneity of treatment effects, noncompliance with treatment assignment, mediation, generalizability, and spillover. Though a secondary focus, we also touch on promising trial designs that answer more nuanced questions, such as the SMART design for studying dynamic treatment regimes and factorial designs for optimizing the components of an existing treatment.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-36
Author(s):  
Chao Yu ◽  
Jiming Liu ◽  
Shamim Nemati ◽  
Guosheng Yin

As a subfield of machine learning, reinforcement learning (RL) aims at optimizing decision making by using interaction samples of an agent with its environment and the potentially delayed feedbacks. In contrast to traditional supervised learning that typically relies on one-shot, exhaustive, and supervised reward signals, RL tackles sequential decision-making problems with sampled, evaluative, and delayed feedbacks simultaneously. Such a distinctive feature makes RL techniques a suitable candidate for developing powerful solutions in various healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged period with delayed feedbacks. By first briefly examining theoretical foundations and key methods in RL research, this survey provides an extensive overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis, and many other control or scheduling problems that have infiltrated every aspect of the healthcare system. In addition, we discuss the challenges and open issues in the current research and highlight some potential solutions and directions for future research.


Sign in / Sign up

Export Citation Format

Share Document