scholarly journals Reinforcement Learning in Healthcare: A Survey

2023 ◽  
Vol 55 (1) ◽  
pp. 1-36
Author(s):  
Chao Yu ◽  
Jiming Liu ◽  
Shamim Nemati ◽  
Guosheng Yin

As a subfield of machine learning, reinforcement learning (RL) aims at optimizing decision making by using interaction samples of an agent with its environment and the potentially delayed feedbacks. In contrast to traditional supervised learning that typically relies on one-shot, exhaustive, and supervised reward signals, RL tackles sequential decision-making problems with sampled, evaluative, and delayed feedbacks simultaneously. Such a distinctive feature makes RL techniques a suitable candidate for developing powerful solutions in various healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged period with delayed feedbacks. By first briefly examining theoretical foundations and key methods in RL research, this survey provides an extensive overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis, and many other control or scheduling problems that have infiltrated every aspect of the healthcare system. In addition, we discuss the challenges and open issues in the current research and highlight some potential solutions and directions for future research.

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110073
Author(s):  
Tengteng Zhang ◽  
Hongwei Mo

Applying the learning mechanism of natural living beings to endow intelligent robots with humanoid perception and decision-making wisdom becomes an important force to promote the revolution of science and technology in robot domains. Advances in reinforcement learning (RL) over the past decades have led robotics to be highly automated and intelligent, which ensures safety operation instead of manual work and implementation of more intelligence for many challenging tasks. As an important branch of machine learning, RL can realize sequential decision-making under uncertainties through end-to-end learning and has made a series of significant breakthroughs in robot applications. In this review article, we cover RL algorithms from theoretical background to advanced learning policies in different domains, which accelerate to solving practical problems in robotics. The challenges, open issues, and our thoughts on future research directions of RL are also presented to discover new research areas with the objective to motivate new interest.


Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


Sign in / Sign up

Export Citation Format

Share Document