Recovering singular Sturm-Liouville differential pencils from spectral data

2011 ◽  
Vol 1 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Vjacheslav A. Yurko
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yongxia Guo ◽  
Guangsheng Wei ◽  
Ruoxia Yao

Abstract In this paper, we are concerned with the inverse spectral problems for differential pencils defined on $[0,\pi ]$ [ 0 , π ] with an interior discontinuity. We prove that two potential functions are determined uniquely by one spectrum and a set of values of eigenfunctions at some interior point $b\in (0,\pi )$ b ∈ ( 0 , π ) in the situation of $b=\pi /2$ b = π / 2 and $b\neq \pi /2$ b ≠ π / 2 . For the latter, we need the knowledge of a part of the second spectrum.


2020 ◽  
Vol 28 (3) ◽  
pp. 449-463 ◽  
Author(s):  
Natalia P. Bondarenko ◽  
Chung-Tsun Shieh

AbstractIn this paper, partial inverse problems for the quadratic pencil of Sturm–Liouville operators on a graph with a loop are studied. These problems consist in recovering the pencil coefficients on one edge of the graph (a boundary edge or the loop) from spectral characteristics, while the coefficients on the other edges are known a priori. We obtain uniqueness theorems and constructive solutions for partial inverse problems.


2006 ◽  
Vol 49 (2) ◽  
pp. 309-329 ◽  
Author(s):  
Rostyslav O. Hryniv ◽  
Yaroslav V. Mykytyuk

AbstractWe solve the inverse spectral problems for the class of Sturm–Liouville operators with singular real-valued potentials from the Sobolev space $W^{s-1}_2(0,1)$, $s\in[0,1]$. The potential is recovered from two spectra or from one spectrum and the norming constants. Necessary and sufficient conditions for the spectral data to correspond to a potential in $W^{s-1}_2(0,1)$ are established.


Author(s):  
Natalia Bondarenko

AbstractWe consider a pencil of matrix Sturm–Liouville operators on a finite interval. We study the properties of its spectral characteristics and inverse problems that consist in the recovering of the pencil by the spectral data, that is, eigenvalues and so-called weight matrices. This inverse problem is reduced to a linear equation in a Banach space by the method of spectral mappings. A constructive algorithm for the solution of the inverse problem is provided.


2013 ◽  
Vol 44 (3) ◽  
pp. 327-349 ◽  
Author(s):  
Sergey Buterin ◽  
G. Freiling

We study the Sturm-Liouville operator on a noncompact star-type graph consisting of a finite number of compact and noncompact edges under standard matching conditions in the internal vertex. We introduce and investigate the so-called spectral-scat\-tering data, which generalize the classical spectral data for the Sturm-Liouville operator on the half-line and the scattering data on the line. Developing the idea of the method of spectral mappings we prove that the specification of the spectral-scattering data uniquely determines the Sturm-Liouville operator on the graph.


Sign in / Sign up

Export Citation Format

Share Document