Numerical Investigations on Hydrodynamic Performance of An Open Comb-Type Breakwater Under Medium Water Levels

2021 ◽  
Vol 35 (6) ◽  
pp. 866-877
Author(s):  
Zhuo Fang ◽  
Liang Cheng ◽  
Zhi-peng Zang ◽  
Chen Shen ◽  
Ying-hui Tian ◽  
...  
2015 ◽  
Vol 7 (7) ◽  
pp. 168781401559208 ◽  
Author(s):  
Chang Cai ◽  
Zhigang Zuo ◽  
Shuhong Liu ◽  
Yulin Wu

Author(s):  
E. M. B. Sorensen ◽  
R. R. Mitchell ◽  
L. L. Graham

Endemic freshwater teleosts were collected from a portion of the Navosota River drainage system which had been inadvertently contaminated with arsenic wastes from a firm manufacturing arsenical pesticides and herbicides. At the time of collection these fish were exposed to a concentration of 13.6 ppm arsenic in the water; levels ranged from 1.0 to 20.0 ppm during the four-month period prior. Scale annuli counts and prior water analyses indicated that these fish had been exposed for a lifetime. Neutron activation data showed that Lepomis cyanellus (green sunfish) had accumulated from 6.1 to 64.2 ppm arsenic in the liver, which is the major detoxification organ in arsenic poisoning. Examination of livers for ultrastructural changes revealed the presence of electron dense bodies and large numbers of autophagic vacuoles (AV) and necrotic bodies (NB) (1), as previously observed in this same species following laboratory exposures to sodium arsenate (2). In addition, abnormal lysosomes (AL), necrotic areas (NA), proliferated rough endoplasmic reticulum (RER), and fibrous bodies (FB) were observed. In order to assess whether the extent of these cellular changes was related to the concentration of arsenic in the liver, stereological measurements of the volume and surface densities of changes were compared with levels of arsenic in the livers of fish from both Municipal Lake and an area known to contain no detectable level of arsenic.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


CIM Journal ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Kucukal ◽  
J. R. Kadambi ◽  
J. Furlan ◽  
R. Visintainer

2006 ◽  
Vol 16 (8) ◽  
pp. 981-996 ◽  
Author(s):  
Richard A. Jepsen ◽  
Sam S. Yoon ◽  
Byron Demosthenous

Sign in / Sign up

Export Citation Format

Share Document